

مكانسنجي صنايع غذايى در دشتهاى آبى كشور

ץ- دانشيار، دانتكده مهندسى عمران، ، يست النترونيكى: abrisham@sharif.edu

جكيده

در حالى كه منابع تجديدپذير آب در جهان محدود مىباشد، جمعيت زمين در حال رشد و نياز به آب در بخشهاى مختلف شهرى، صنعتى، كشاورزى و زيستمحيطى نيز رو به افزايش است است واقي القع شدن ايران در منطقه خشك و كم آب جهان، رشد سريع صنايع توليدى در كشور و ايجاد و گسترش

 ابتدا به معرفى صنايع پر مصرف كشور و مقايسه مصرف آب آنها و بررسى دشتهاياى آبى آبى كشور از لحاظ
 پرمصرفترين صنايع كشور، مكانسنجى اين صنايع در دشتهاى آبى كشور توسط نرمافزار سيستم اطلاعات جغرافيايى انجام شده و ارزيابى موقعيت مكانى كارخانجات صنايع قند از نظر مصرف آب

 مى باشد. در انتهاى مقاله به راهكارهاى پيشنهانیى براى كاهش مصرف آب و بازيافت آن در صنايع قند كشور پرداخته شده است. وازههاى كليدى: مكانسنجى، صنعت قند، مديريت آب و فاضـلاب، دشــتهاى آبـى كـشور، سيـستم اطلاغـات جغر أفيايى

1- مقدمه

توسعه اقتصادى و صنعتى، رشد جمعيت و بالا رفتن سطح رفاه عمومى، افزايش مصرف آب در بخشههاى مختلف شهرى، صنعتى، كشاورزى و زيست محيطى را سبب شده است [זا]. افت كيفى منابع آب،

واقع شدن ايران در منطقه خشك و كم آب جهان، اعمال مديريت صحيح منابع آب در آن را ضرورىتر مىسازد. علاوه برآن رشد سريع صنايع توليدى كشور و ايجاد و گسترش شهر كهایى صنعتى كه عموماً
 منابع مختلف مصرف ايجاد كرده و فشار بيشترى بر منابع آب زيرزمينى در بيشتر دشتهاى كشور وارد
 آب بدون طرحريزى و اجراى برنامdهاى عملى كاهش مصرف، تصفيه فاضلاب و استفاده مجدد از آن

 طرحهايى بستگى زيادى به شناخت وضعيت موجود، اولويتبندى بر اساس پتانـي استفاده مناسب از تكنولوزيهاى قابل دسترس و مهيمتر از همه توانايى مديران و تعامل مسئولين

 ذخاير آب شيرين و آلودگى آنها داشته، در مقابل بيشترين پتانسيل براى كاهش مصرف و اجراى
 جديد صنعتى به منظور جلوگيرى از افزايش فشار بر منابع آب محلى و شناخت و و توجه به موقعيت مراكز موجود با توجه به شرايط اقليمى و وضعيت منابع آب به عنوان نخستين قدم در تضمين موفقيت طر حهاى مديريت آب و فاضلاب صنعتى محسوب مىشود. اهميت اين مسأله زمانى مشخصتر مىیگردد كـر كه بر اساس مطالعات صورت ترفته، بيشتر مراكز و

 هزينههاى كلانى تحميل خواهد كرد.

Y-وضعيت صنايع كشور از لحاظ مصرف آب

 مصارف) خواهد رسيد(جدول (). صنايع غذايي كشور در مجموع IV/Q درصد از تعداد كل واحدها و

 نسبت به ساير صنايع، نياز به ايجاد التوى مناسب مديريت آب و فاضلاب در اين بخش را روشن مىسازد[!]. مهمترين صنايع غذايى كشور از نظر مصرف آب به ترتيب عبارتند از: صنايع توليد قند و شكر، صنايع لبنى، صنايع گوشت و كشتارگَاهها(جدول (Y).

[II(برحسب ميليارد متر مكعب در سال)

140.		Ifta		If..		IrV9		
درصد	مقدار	در	مقدار	درصد	مقدار	درصد	مقدار	
9	1.	\wedge	9	V	\checkmark	Δ	F/6	شهرى
9	1.	\wedge	9	¢	9	1	1	صنعتى
At	9.	Af	9 T	AV	19	94	A1/S	كشاورى
1..	11.	1..	11.	I..	I.r	1..	AV	جمع كل

جدول r- بالاترين مصرف كنندكان آب در بين صنايع كشور [\$]

درصد آب خريدارى شده توسط كاركاهمها به كل	ميزان آب خريدارى شده (هزار مترمكعب)	نام صنعت	رديف
IN/AD	Irrand	توليد قند و شكر	1
\| $\mathrm{V} / \mathrm{P} \cdot \mathrm{b}$	$\|r \cdot 0\|$	توليد محصولات اوليه آهنّ	r
9/49	ganv.	توليد خمير كاغذه، كاغذه و همقوا	r
$\Delta / / \mathrm{V}$	rervr	توليد شيشه جام	r
$\Delta / \cdot \mathrm{r}$	rarra	توليد مواد	Δ
F/9r	regav		¢
f/rs	r.V.r		V
riat	19AFf	آمادهسازى و ريسندگى الياف منسوج	\wedge
:	:		:
-1/	Druy	توليد فرآور دههاى لبنى	iv
. 19.	fyf.	كشتار دام و طيور و عمل آورى توشت	rr

اهميت صنايع قند كشور از آنجا ناشى مىشود كه اين صنعت با مصرف بيش از

 مصرف آب در اين كارخانجات را بسيار فراتر از حد استاندارد قابل قبول جهانى (رقمى در حدودץ-1 آمان
(m³/ton

 چچنندر قند قابل كاهش است[1]. جدول r، گستره مقادير فاضلاب توليدى در بخشهاى مختلف كارخانجات قند را نمايش مىدهد. ميزان مصرف آب در كارخانههاى مختلف قند حتى با تكنولوزيهاى يكسان بسيار متفاوت گزارش شده است. اين اختلاف بيش از آنكه ناشى از نوع تكنولورى مورد استى استفاده
 طرحريزى و اجراى برنامههاى كنترل مصرف و استفاده مجده از پساب به عنوان پايلوت، مكانسنجى كارخانیانجات توليد قند و شكر انجام گرفته است. چنينين روشى براى مكانسنجى صنايع مختلف كشور امكانپذير است.

r- مكانسنجـى كارخانجات قند در دشتهاى كشور

به منظور مكانسنجى كارخانجات قند كشور و نتيجهگيرى مطلوب از آن آن در أين تحقيق اقدام
 هواشناسى كشور و تبديل آنها به اطلاعات مورد استفاده در سيستم اطلاعات جغرافيانيايى شد.
r-ا- بيلان آب دشتههاى كشور
به منظور نشان دادن اهميت مديريت آب و فاضلاب صنايع غذايى در ايران و لزوم استفاده از پساب تصفيه شده در مصارف كشاورزى اقدأم به تهيه نقشه بيلان آب زيرزمينى در دشتهاي انى كشور شد.

جدول

COD (mg/L)	BOD (mg/L)	(m³/ton) توليد	هنبع توليد
متغير، بسته به ميزان بر گشت جريان	$r \cdots-\gamma \ldots$	$0-19$	شستشو و انتقال
	$r \cdot-11$.	$r-11$	خنك كنندها
10..-1...	Ir..-1...	1-r/Q	عصارهگيرى
1. $\cdot \cdots-\Delta \cdot \cdots$		$\cdot / \mathrm{r}-\cdot / \mathrm{A}$	فرايند استفان
	$\wedge \cdots$	$\cdot / r-1$	انتقال تفالهها و لجن آهكى

[^0]

 نيازها مىباشد [9] قدم اول در تهيه نقشه بيلان آب، تعيين ميزان تغذيه و تخليه دشتهاى آبى كشور مى آباشد. بدين مناين منظور

 ايران صورت مى گيرد. به طور كلى آبخوانهاى آبرفتى بيش از آليا هستند. شكل ا وضعيت بيلان آب در دشتهاى كشور ر را نمايش میى آيهد.

 انجام مى یذيرد[ّ]. روشهاى طبقهبندى اقليمى بسيار متنوع مىباشد. نظر به اينكه در اين تحقيق

شكل ا- بيلان آب در دشتهاى كشور و جانمايى كارخانجات قند در آن

شناخت اقليمهاى مستعد توسعه صنايع غذايى خـاص بـا توجـه بـه وجـود منــابع آب مــنـنظر اســتـ، از از

 بر مبناى شاخص خشكى انجام مىیذيرد [9]:

$$
A_{i}=\frac{P}{T+10}
$$

(1 (فرمول)
در اين رابطه، P ميانگين سالانه بارندگى بر حسب ميليمتر و T ميانگّين سالانه دماى روزانه بر حسب

 اقليمى حاصل گرديد. يُهنهبندى حاصل در شكل با تصوير شده است است

ط طبق آمار سال

 مورد استفاده در كارخانجات قند كشور تقريباً مشابه مى الشاشند. برخى از كارخاندانجات نزديك به . لا سال

جدول \&- آستانههاى روش دومار تن 4]

A نماد	طبقه اقليمى	حدود شاخص خشكى
A_{1}	خشك	\cdot-1.
A_{2}	نيمه خشك	$1 \cdot-r$.
A_{3}	مديترانهاى	r--rif
A_{4}	نيمه مرطوب	rf-rs
A_{5}	مرطوب	ra-rs
A_{6}	خيلى مرطوب (نوع الف)	r Δ - $\Delta \Delta$
A_{7}	خيلى مرطوب (نوع ب)	بيشتر از ${ }^{\text {¢ }}$

شكل ${ }^{\text {r- نقشه يهندبندى اقليمى كشور و جانمايى كارخانجات قند در آن }}$

 مختصات طول و عرض تقريبى موقيت اين كارخانجات به GIS، لايه نقطهاى موقعيت كارخانجات ارات قند كشور تهيه شد.

F
با انطباق نقشههاى موقعيت مكانى كارخان

 امكانيذير خواهد بود. آناليز دادهماى رسترى در محيط ArcView نشان داد، بيش از

 كاهش آلودگى و بازيافت فاضلاب در اين صنعت بيشنهاد میى تراي ردد:

 تخليه خشك را توجيه مىنمايد. توجيهذيرى اقتصادى استفاده از روشهاى انتقال خشك در

كارخانههاى قند ايران كه با ظرفيت پائين كار مىكند، نسبت به روش انتقال هيدروليكى قابل بررسى است
 تصفيه بيولوريكى جهت آبكشى چغغندر قبل از انتقال به دستگاه خلال آل آل「- تصفيه مكانيكى آب انتقال و شستشو: شامل جدا كردن قطعات ريز مواد آلى بوسيله سرند لرزان، جداكردن خاك با ايجاد حوضحّه ها هاى تهنشينى

 צ- جداكردن فاضلابهاى متفرقه كارخانه از سيستهم انتقال و شستشو V- ا- استفاده از مدارهاى جداگاگانه براى آب انتقال و آب شستشار
 ميزان آب برگشتى از هرس تفاله 9- مديريت مصرف آب در واحد تصفيه شربت: از طريق بهينه كردن مصرف آهكى، كاهش مصرف آبر تر آب در فرايند شربت شويى و مديريت توليد گَل كربناتاسيون

9-

 مصرف مىكنند كه بسيار بيشتر از حد قابل قبول جهانیانى (حدود
 بالايى براى اجراي برنامههاى كاهـا

 صنايع قند مورد بررسى قرار گرفتهـ است.
[1] بابايى نثاد س.م.، تجريثى م.، ابريشمجى ا.ا، مميزى و كاهش مصرف آب در كارخانه قند اصفهان، آب و
[r] سنديكاى صنايع قند كشور، آمار صنايع قند كشور، ITMY

[f] قائمى م.،كمينه سازى فاضلاب و تصفيه فاضلاب صنايع قند با رآكتور UASB، پايان نامه كارشناسى ارشد، دانشتگاه صنعتى شريف، ITVA
[ه] طرح مطالعات روشهاى بازيافت آب و فاضلاب در صنايع غذايى، تزارش پیشرفت كار، دانشگاه صنعتى
شريف، فروردين

تربيت مدرس، IYYF
[9] وزارت نيرو، طرح مطالعات جامع آب كشور - گَارش سنتز، سال ITVY
[10] Barnes D. et al., Food and Allied Industries, Pitman Press; 1984
[11] Ganjidoust H., Ayati B., Water and Wastewater Minimization Plan in Food Industries, Wat. Sci. Tech. Vol. 45, No. 12, pp. 361-365
[12] Gary J., et al., Food Processing Operations Use large Volume of Water, University of North Carolina, 1988
[13] Herman B., Irrigation and Global Water Outlook, (U.S. Dept of Agriculture); National Conference Publication - Institution of Engineers, Australia, v 2(B), n 94/14, p 579-580, 1994
[14] Miller K. J., Keys to Better Water Quality, Municipal Wastewater Reuse, EPA 430/09-91-022, 1991
[15] Okun D. A., Realizing the Benefits of Water Reuse in Developing Countries, , Municipal Wastewater Reuse, EPA 430/09-91-022, 1991
[16] USDA, Food Industry Water and Wastewater Management, (1979)
[17] Zbontar L., et al., Total Site: Wastewater Minimization, Wastewater Reuse and Regeneration Reuse, Resources, Conservation and Recycling 30 pp.261-275, 2000
[18] Dilek F. B., et al., Water Saving and Sludge Minimization in a Beet-sugar Factory Through Re-design of the Wastewater Treatment Facility, Journal of Cleaner Production 11,pp. 327-331, 2003

[^0]: ${ }^{1}$ Cleaner Production

