
Uncertainty Analysis in QUAL2E Model
of Zayandeh-Rood River

A. Abrishamchi, M. Tajrishi, P. Shafieian

ABSTRACT: Water-quality modeling and prediction is a complicated

task because of inherent randomness and uncertainties associated with

various processes and variables throughout the stream environment and the

lack of appropriate data. Hence, the results of mathematical models are

always approximate, lying within an uncertainty. This paper describes and

demonstrates the application of the U.S. Environmental Protection Agency’s

water-quality model, QUAL2E-UNCAS, to the Zayandeh-Rood River in

Iran. First-order reliability analysis is used to examine the variability of

predicted water-quality parameters of total dissolved solids, dissolved

oxygen, and biochemical oxygen demand. This analysis also determines key

sources of uncertainty affecting prediction of the water-quality parameters.

The results show that reliability analysis can help water-quality modelers and

planners to quantify the reliability of the water-quality predictions and to

carry out more efficiently planned sampling and data collection programs to

reduce model-prediction uncertainty. Water Environ. Res., 77, 000 (2005).
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Introduction
Population growth and expansion of agricultural, industrial, and

urban sectors are generally a threat to the integrity of water

resources. Rivers in Iran, as fragile ecosystems and important

sources of water for various purposes, are seriously affected by the

above-mentioned activities in their basins. Hence, environmental

concern has focused increasingly on the deterioration of the nation’s

rivers because of increased discharges of pollutants. This alarming

situation requires effective measures to protect these vital ecosys-

tems. Streamwater-quality protection and management needs

a sufficient tool to describe the present situation and to predict

changes expected from alternative management strategies. Mathe-

matical modeling of the streamwater quality is a popular supporting

tool in water-quality management.

Water-quality modeling and prediction is a complicated task,

mainly because of inherent randomness exhibited throughout the

stream environment. Not only are the physical and biological

processes not clearly defined, but an imposing number of

uncertainties are associated with the various processes occurring

within the stream environment. The complex interaction and

stochastic nature of water-quality variables prevent complete

confidence in deterministic solution of a system’s water quality.

Results of mathematical models are always approximate, lying

within an uncertainty range. Application of streamwater-quality

models on management process has been hampered by a lack of

appropriate data for minimization of model simulation uncertainty.

Uncertainty in simulation from water-quality models may contribute

to the unexpectedly poor results of some stream water pollution

control strategies and plans.

Water-quality data collection is a time-consuming and relatively

expensive task. Thus, water-quality models developed and used for

many rivers have been calibrated and verified with inadequate data

collected during short periods of model development or before model

development during general streamwater-quality monitoring. Under

this situation, water quality is simulated with uncertain model

parameters or inputs, thus increasing the uncertainty of simulation

results and adversely affecting decision making for water pollution

control.

This paper describes and demonstrates the application of the U.S.

Environmental Protection Agency’s (U.S. EPA’s) water-quality

model, QUAL2E-UNCAS (Brown and Barnwell, 1987), for the

Zayandeh-Rood River in Isfahan, Iran. First-order reliability analysis

(FORA), as one of the uncertainty analysis options provided by the

UNCAS portion of this model, is used to examine the variability of

predicted water-quality values. The FORA application provides

insight on model performance in terms of key parameters and input

variables requiring detailed study and the overall model prediction

uncertainty. The objective of this study was to identify the model

input parameters and variables (reaction coefficients, initial

conditions, pollutant loads, etc.) that significantly affect the

uncertainty of estimates of various key water-quality constituents

so that the uncertainties in the coefficients can be reduced by

a carefully designed sampling program.

Methodology
Modeling Uncertainty. The mathematical modeling process

can be resolved into the transformation of input variables to output

variables, using a given number of parameters and transfer function.

A mathematical model has a certain mathematical form or structure

and a set of parameters and can be represented by a relationship of

the form (Freissinet et al., 1996). ?1

Y ¼ FðXi; ajÞ þ e ð1Þ

Where

Y 5 output variable,

Xi 5 input variable,

aj 5model parameters, and

e 5 conceptualization error.

Differences always exist between the true and estimated models

and between the true and estimated model parameters. These

differences represent modeling uncertainties. To prove that the

model is not a rough approximation of reality, one has to make sure

to choose adequate physical laws to describe the physical reality of

the systems (cause-and-effect relationships) and to take the

uncertainty in the model parameters and input variables into account.
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Analysis of Uncertainty and Imprecision in Input Param-
eters. The problem of uncertainty in the results of mathematical

modeling for ecologic systems is partly because of uncertainty of

data and vague expert knowledge, which may result from incomplete

or inadequate data, spatial and temporal variability in the parameters,

estimation instead of measurements, and qualitative and subjective

information from expert knowledge. Variability, or error in model

inputs, contributes to uncertainty of calculated output variables.

Analysis of the uncertainty of predicted values is necessary to

determine the reliability with which the planner can use predicted

water-quality values.

Different methods are available to estimate the validity and

reliability of the results. Classical methods of sensitivity analysis

and reliability analysis have been used for many years. Fuzzy rule-

based approach is another approach which has found application in

analysis of uncertainty and vagueness in hydrologic and ecologic

parameters (Bardossy and Duckstein, 1995).

Classical Methods. Two well-known approaches exist for

determining the effect of parameter uncertainty on the confidence

of model results. The first one, called sensitivity analysis, consists

essentially in perturbing each coefficient in a defined range of values,

solving the equations, and observing the effect of the perturbation on

the solution. A number of researchers (e.g., Beck, 1987; Gardner et

al., 1981; Yeh and Tung, 1993) have shown that the traditional

sensitivity analysis is not appropriate for determining the sources of

uncertainty that most affect model output. The reason is that the

sensitivity coefficient for a parameter does not account for the

likelihood that the parameter is different from its ‘‘correct’’ value.

Therefore, a highly sensitive parameter that is known with low

uncertainty may have much less effect on the uncertainty of model

output than a much less sensitive parameter that is highly uncertain.

The second approach is uncertainty analysis by which the

uncertainty of the solution resulting from the uncertainty of one or

more input parameters is estimated. The methods available for this

kind of analysis can be classified into three main groups.

(1) Statistical sampling (or simulation-based) methods, which

evaluate the range of likely output estimates by defining

a representative set of values for the uncertain parameter as

inputs for the model. The set of values is determined using

random sampling methods, taking into account the probability

distribution functions and correlation between the parameters.

A well-known method belonging to this approach is Monte-

Carlo simulation.

(2) First-order reliability analysis based on a Taylor series

expansion and truncated after the first-order term (Benjamin

and Cornell, 1970; Cornell, 1972). This requires knowledge of

the sensitivity coefficient and covariance structure for each

parameter.

(3) Bayesian methods, typically used when parameter values

can only be specified by expert judgments, require many as-

sumptions concerning the applications (Eslinger and Sagar,

1987).

Statistical sampling (e.g., Monte-Carlo Simulation) and I allow

consideration of the combined effects of parameter sensitivity and

parameter uncertainty in the determination of the key parameters

affecting model prediction uncertainty.

First-Order Analysis of Uncertainty. Essentially, first-order

analysis provides a methodology for obtaining an estimate for the

moments of a random variable, which is a function of one or several

random variables. It estimates the uncertainty in a mathematical

model involving uncertain parameters. By using first-order analysis,

the combined effect of uncertain parameters and the uncertainty in

a model formulation can be assessed.

To present the methodology of first-order analysis, consider

a random variable, C, as the concentration of the constituent

simulated in the selected water-quality model, which is a function of

N uncertain (i.e., random) variables (model-input variables, model

parameters, etc.). Mathematically, C can be expressed as

C ¼ gðXÞ ð2Þ

Where X 5 (x1, x2, . . . , xN); a vector containing N random

variables x. In FOR A, a Taylor series expansion of the model

output C is truncated after the first-order term

C ¼ gðXeÞ þ
XN
i¼1

ðxi � xieÞ
@g

@xi

� �
xe

ð3Þ

Where Xe equals the vector of uncertain basic variables representing

the expansion point and the subscript xe indicates that the partial

derivative is taken at the expansion point.

In FORA applications to water resources engineering, the ex-

pansion point is commonly the mean value of the basic variables.

Thus, the expected value and variance of the performance function

are as follows.

E½C� ¼ lc ’ gðXmÞ ð4Þ

VarðCÞ ¼ r2
c ’

XN
i¼1

XN
j¼1

@g

@xi

� �
Xm

@g

@xj

� �
Xm

cov½xi; xj� ð5Þ

Where

lc 5mean of C;

rc 5 standard deviation of C;

Xm 5 vector of mean values of the basic variables; and

cov [xi, xj] 5 covariance between random variables xi and xj.

If the basic variables are statistically independent (uncorrelated),

eq 5 reduces to the following.

VarðCÞ ¼ r2
c ’

XN
i¼1

@g

@xi

� �2
Xm

r2
i ð6Þ

Where rfor a 5 the standard deviation of basic variable i.

First-order analysis only provides estimates of the mean and

variance of C; it does not give the probability distribution itself,

which requires specification of all the moments (in the special case

of a normal distribution, the first two moments completely specify

the distribution). Despite this limitation, FOR A is an extremely

useful tool in many applications. Its use is desirable in many cases

where an approximate analysis is needed with only the means and

variances of the random variables available, a situation often found

in practical cases. The use of first-order analysis is justified par-

ticularly when the estimates for higher moments of a distribution are

very uncertain because of small sample size.

It is typically assumed that C is normally distributed, and the

exceedance probability PE for a given target concentration CT is

estimated as

PE ¼ 1 � / ðCT � lcÞ=rcf g ð7Þ

Where /f g is the standard normal integral. The normal assumption

has several practical advantages that are discussed by Yen et al.

(1986) and Melching (1995).

Abrishamchi et al.

March/April 2005



When the Taylor series is expanded at the mean of the basic

variables, only mean and variance of the basic variables and simple

sensitivity coefficients are required in FORA. However, its

application to engineering design problems has several theoretical

or conceptual problems. The main problem is that a single

linearization of the model output function at the central value of

the basic variables is assumed to represent the statistical properties of

model output over the complete range of basic variables values. For

nonlinear systems, this assumption becomes more inaccurate because

design failure should result only because of extreme values of the

basic variable describing the system (Cheng, 1982; Melching, 1992).

First-order reliability analysis has been widely used in all fields of

engineering because of its relative ease in application to many types

of problems. The FORA, with the expansion at the mean values, has

been applied successfully in the water-quality modeling, despite the

conceptual problems. Burges and Lettenmaier (1975) and Melching

and Anmangandla (1992) have applied the method to investigate the

uncertainty in prediction of biochemical oxygen demand (BOD) and

dissolved oxygen (DO) within a stochastic stream environment.

Chadderton et al. (1982) used FORA to determine the relative

contributions of reaeration rate, deoxygenation rate, initial DO

concentration, and BOD load on output uncertainty for the Streeter-

Phelps model (Streeter and Phelps, 1925) for streamflow conditions

typical for natural streams. Brown and Barnwell (1987) used FORA

to determine the relative contributions of all parameters in QUAL2E

on the uncertainty of estimates of carbonaceous BOD (CBOD) and

DO concentrations for a river in Georgia and Florida. Melching and

Yoon (1996) illustrated that a simple method based on FORA may

be applied to determine key sources of uncertainty affecting

uncertainty for complex water-quality models.

QUAL2E-UNCAS Stream-Quality Model. Water-quality

models have been used since 1925, when Streeter and Phelps

(1925) developed the first water-quality model. As a steady-state

model, QUAL2E is presently the most widely used model for

simulating streamwater quality. It is capable of simulating up to 15

water-quality constituents in branched stream networks that are

well-mixed laterally and vertically. Among its many capabilities, it

allows for multiple waste discharges, withdrawals, tributary flows,

and incremental (that is, distributed) flows and outflows.

Constituents that can be simulated in the model are DO, BOD,

temperature, algae as chlorophyll a, components of the nitrogen

cycle as nitrogen (organic nitrogen, ammonia, nitrite, and nitrate),

components of the phosphorus cycle (like organic and dissolved

phosphorus), coliforms, an arbitrary nonconservative constituent,

and three arbitrary conservative constituents. The primary applica-

tion of QUAL2E is simulation of DO and CBOD, the nitrogen

cycle, algae (dependent on the nitrogen and phosphorus cycle),

sediment oxygen demand, and atmospheric reaeration. Details on

these interactions as simulated in QUAL2E are presented in Brown

and Barnwell (1987).

In QUAL2E model simulations, the stream is conceptualized as

a string of completely mixed reactors that are linked sequentially by

advective transport and dispersion. Sequential groups of these reac-

tors or computational elements are defined as reaches. Computa-

tional elements in each reach have identical length, hydrogeometric

properties, and biological rate constants. The hydrogeometric prop-

erties and biological rate constants may change between reaches, but

the computational element length remains constant throughout the

simulated stream.

A mass balance is used to keep track of the water quality

constituents. This balance can be written generally as

V
@c

@t
Accumulation

¼
@ AcE

@c

@x

� �

@x
dx

Dispersion

� @ðAcUcÞ
@x

dx
Advection|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

þ V
dc

dt
Kinetics

þ s
External sources=sinks

ð8Þ

Where

V 5 volume,

C 5 constituent concentration,

Ac 5 element cross-sectional area,

E 5 longitudinal dispersion coefficient,

x 5 distance,

u 5 average velocity, and

s 5 external sources (positive) or sinks (negative) of the

constituents.

The model solves the finite difference formulation of the above

one-dimensional advection dispersion equations applied to succes-

sive stream reaches.

The QUAL2E-UNCAS is a version of the QUAL2E model that

allows consideration of parameter uncertainty in predicting water-

quality variables. Uncertainty subroutines are included in QUAL2E

(QUAL2E-UNCAS) with options for sensitivity analysis, FORA,

and Monte Carlo simulation. In this paper, FORA option of

QUAL2E-UNCAS is applied to determine the relative contributions

of some important parameters in QUAL2E on the uncertainty of

estimates of BOD and DO concentrations for the Zayandeh-Rood

River in Isfahan.

Case Study
Description of the Zayandeh-Rood River. The Zayandeh-

Rood (ZR) River is the main perennial river in central Iran with

a length of approximately 320 km. The total catchment area of this

river is approximately 31 000 km2, of which 4200 km2 is upstream

of the ZR Reservoir, located 110 km northwest of the city of

Isfahan. The ZR River flows toward the Southeast and drains in to

Batlaq-e-Gavkhooni (Gavkhooni marsh), 130 km southeast of the

city of Isfahan. The river’s flow, plus the augmentation by

transbasin diversion from Upper Karoon River tributaries (Kooh-

rang River), constitutes the surface water resources for urban,

agricultural, and industrial uses in the Isfahan plain. It provides

water for several cities, including Isfahan, with a total population of

over two million and for many large industries located in the river

basin. It also irrigates over 100 000 hectares of land before leaving

the Isfahan plain. The watershed of the ZR River and the modeled

portion of the river are shown in Figure 1.

The ZR river basin may be divided into three different zones

based mainly on the topography and climate.

(1) The high mountainous areas at the western boundary of the

basin are the main part of the watershed which feed the ZR

River, with an annual average precipitation of approximately

1000 mm, mainly in the form of snow.

(2) The lower mountainous areas have a lesser amount of

precipitation (200 to 300 mm per year).

(3) The plain area, which includes the major agricultural, industrial,

and urban zones, has a low amount of precipitation (approx-

imately 100 mm per year).
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The water quality of the ZR River in the lower zone (i.e., plain

area) is influenced by municipal, industrial, and agricultural

pollution. There are several cities and villages along the river

which discharge their raw or partially treated wastewater with an

average five-day BOD (BOD5) of over 200 mg/L to the river. The

Isfahan wastewater treatment plant (WWTP) (Abshar Plant), as the

biggest point source, discharges its effluent directly to the river (see

Figure 1). This plant is hydraulically overloaded frequently during

the year; thus raw wastewater bypasses the plant and discharges

directly to the river.

Several large industries (mainly textile) also discharge their raw or

partially treated wastewater into the river. Another major source of

ZR River pollution is agricultural activities. Drainage water in the

form of point source (open drains) and distributed source (interflow)

is discharged to the river. Urban runoff is another source of ZR River

pollution.

Application of the QUAL2E-UNCAS Model. Among several

models, the QUAL2E model was selected to use in the study

because the flow condition downstream of ZR Reservoir is

relatively steady. The modeled portion of the river was divided

into eight reaches containing conceptual elements that were each

500 m long (Figure 1).

Model Calibration. Calibration is an important step in the

modeling procedure, especially when the model is used for

prediction purposes. Model calibration aims at determining the

values for a subset of parameters which can not be obtained directly

from measurement.

The QUAL2E model was calibrated for application to the ZR

River by adjusting their parameters to ensure the ability to simulate

historic data. Data collected in February 1997 were used for model

calibration (Haghighi et al., 1997). In the data collection survey,

multiple samples taken from the river were analyzed for several

constituents and quality parameters including BOD5, DO, and total

dissolved solids (TDS).

The prediction capacities of QUAL2E for DO, BOD, and TDS

were investigated by adjusting the reaeration rate and deoxygen-

ation rate coefficients within the expected range presented by

Brown and Barnwell (1987). In reality, it is not possible to get full

agreement between modeled and observed values because the input

data typically represent average annual and monthly values, and

therefore model results will also describe the mean water-quality

conditions while observed values represent only instant events.

To verify the model, the summer month of June 1988 data and

the values of the coefficients obtained from calibration were used.

During verification, best predictions were obtained for DO

concentration.

Determination of Key Sources of Uncertainty. The FORA

was applied to the calibrated model to determine the model

parameters and input variables that significantly contributed to

uncertainty in QUAL2E estimating of DO, BOD, and TDS

concentrations at the selected locations in the river. The uncertainty

of each parameter was selected at the default values for typical

QUAL2E application in Brown and Barnwell (1987) and are listed

in Table 1.

Figure 1—Location of Zayandeh-Rood River Basin and model reaches simulated in QUAL2E – Zayandeh-Rood.
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Derivatives required in FORA were determined numerically by

increasing the parameter values one at a time by 5%, determining

the change in concentration of the constituent of interest, and

dividing the change in concentration by the increase in the

parameter value to obtain the normalized sensitivity coefficient.

The application of a 5% increment in the parameter values was

recommended by Brown and Barnwell (1987) for uncertainty

calculations in QUAL2E-UNCAS. The normalized sensitivity

coefficients, SNj,i, are mathematically defined as

SNj;i ¼ ð�Cj=CjoÞð�Xi=XioÞ ð9Þ

Where

�Cj 5 change in the estimated concentration of constituent j

resulting from change �Xi in parameter i with all other

parameters kept at their original values;

Cjo 5 estimated concentration of constituent j when all

parameters are at their original values; and

Xio 5 original value for parameter i.

The locations selected to study model-prediction uncertainty

analysis were at reach 2 element 8, reach 5 element 7, and reach 6

element 19 at the river kilometers of 70, 160, and 260, respectively.

These locations are fairly evenly distributed throughout the river

with diverse values of the model parameters.

The calculated normalized sensitivity coefficients of TDS, DO,

and BOD are listed in Tables 2, 3, and 4, respectively. The

contribution of key model parameters to the variance in the TDS,

DO, and BOD concentrations at the selected locations are listed in

Tables 5, 6, and 7, respectively.

To carry out sensitivity analysis, the key parameters are identified

by ranking the normalized sensitivity coefficients. The rankings of

the most important parameters affecting the estimates of TDS, DO,

and BOD obtained from normalized sensitivity analysis and FORA

are presented in Tables 8, 9, and 10, respectively.

As Table 8 shows, TDS estimation is most sensitive to TDS point

loads, headwater flowrate, and point-discharge rate. The effect of

these parameters increases along the river. The concentration of

headwater TDS has less effect on TDS concentration estimates and

its effect decreases in the downstream direction. These results are

expected as the river TDS concentration increases along the river

because of water withdrawals, consumption, and discharges of drain

water along the river. However, the sensitivity of TDS concentra-

tion estimates to headwater flow rate increases in downstream

reaches because of the diluting role of headwater flow. The ranking

of key parameters applying normalized sensitivity analysis and

FORA are the same.

The rankings of key parameters affecting estimated DO

concentration applying normalized sensitivity analysis and FORA

(Table 9) differ substantially and change along the river. As is

expected, the contribution of reaeration rate, point-discharge BOD,

and BOD decay rate to the variance in estimate of DO concentration

Table 1—Estimated coefficient of variation values for
input parameters and variables.

Parameter (variable) definition Coefficient of variation

CBOD decay rate 15%

Reaeration rate coefficient 15%

Initial temperature 2%

Headwater flowrate 5%

Headwater oxygen concentration 5%

Headwater BOD 10%

Headwater TDS 3%

Point discharge rate 5%

Point discharge oxygen concentration 5%

Point discharge BOD 10%

Point discharge TDS 3%

Table 2—Normalized sensitivity coefficients of total
dissolved solids to key model input parameters.

Input parameter

(variable)

Normalized sensitivity coefficients

Reach 2

element 8

Reach 5

element 7

Reach 6

element 19

Headwater flowrate 20.364 20.418 22.315

Headwater TDS 0.172 0.081 0.004

Point discharge rate 0.372 0.424 2.915

Point discharge TDS 0.828 0.919 0.996

Note: The remaining parameters have normalized sensitivity coeffi-

cients ,0.1.

Table 3—Normalized sensitivity coefficients of dissolved
oxygen to key model input parameters.

Input parameter

(variable)

Normalized sensitivity coefficients

Reach 2

element 8

Reach 5

element 7

Reach 6

element 19

BOD decay rate 0 20.455 20.342

Reaeration rate

coefficient 0.095 0.539 0.555

Temperature 20.175 20.935 20.792

Headwater flowrate 0.575 0.930 0.836

Headwater DO 0.167 0.079 0.048

Point discharge 20.639 20.991 20.943

Point discharge DO 0.413 0.333 0.350

Point discharge BOD 0 20.687 20.629

Note: The remaining parameters have normalized sensitivity co-

efficients ,0.1.

Table 4—Normalized sensitivity coefficients of
biochemical oxygen demand to key model input
parameters.

Input parameter

(variable)

Normalized sensitivity coefficients

Reach 2

element 8

Reach 5

element 7

Reach 6

element 19

BOD decay rate 20.027 20.591 20.253

Temperature 20.025 20.658 20.289

Headwater flowrate 20.251 20.595 21.772

Headwater BOD 0.163 0 0

Point discharge 0.239 0.784 2.268

Point discharge BOD 0.837 1 1

Note: The remaining parameters have normalized sensitivity coeffi-

cients ,0.1.
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increases along the river and are the most affecting parameters at

middle reaches of the river where the effluent of the Abshar WWTP

is discharged to the river.

Regarding the estimate of BOD concentration, point-discharge

BOD, headwater flowrate, point discharges, headwater BOD, BOD

decay rate, and temperature have the highest normalized sensitivity

coefficients at the upper reaches of the river. The ranking of these

coefficients changes along the river. The point discharge BOD,

BOD decay rate, point discharge, and headwater flowrate are the

key model parameters most contributing to the variance in the

highest BOD concentration at the middle reaches of the river where

the Abshar WWTP.

Constituent Prediction Uncertainty Along the River. The

mean, variance, and coefficient of variation of TDS, DO, and BOD

concentration estimates at three points along the river determined by

FORA are listed in Tables 5, 6, and 7, respectively. The statistics of

standard deviation (or variance) is used for comparing the relative

contribution of uncertainty (i.e., ranking) of different parameters in

uncertainty of the estimates of constituent concentrations. To

compare the degree of uncertainty of different constituents, one has

to compare their coefficient of variation (defined as the standard

deviation divided by the mean) of different constituent estimates. As

the middle and downstream locations of the river are more critical in

respect to pollution and need of control, the constituent prediction

uncertainty is discussed at these locations.

The TDS estimates have a very small coefficient of variation,

indicating that model parameter uncertainty has insignificant effects

on prediction uncertainty for this constituent in the QUAL2E ZR

River estimation. The coefficient of variation of DO and BOD

concentration is fairly high. Thus, the parameters significantly

affecting the prediction uncertainty of DO and BOD, as indicated in

Tables 9 and 10, require additional sampling and more accurate

measurement to reduce parameter uncertainty.

Summary and Conclusions
This paper has illustrated the applicability of FORA, a simple

reliability analysis method, in determining key sources of un-

certainty affecting prediction uncertainty for Zayandeh-Rood River

QUAL2E model. The FORA was applied to determine the key

parameters affecting prediction uncertainty for TDS, DO, and BOD

along the Zayandeh-Rood River, simulated with QUAL2E. The

reliability analysis considered uncertainties in 11 model parameters.

The uncertainty of estimated concentrations of TDS because of

input-variable uncertainty was found to be acceptably small.

Therefore, data collection to refine variables significantly affecting

this constituent would not greatly reduce model prediction

Table 5—Contribution of key model input parameters to total dissolved solids concentration variance.

Input parameter

Reach 2 element 8 Reach 5 element 7 Reach 6 element 19

VARa VARa % CVb VARa VARa % CVb VARa VARa % CVb

Headwater flowrate 59.1 25 0.018 172.6 26.5 0.020 1652666 37.7 c

Headwater TDS 4.8 2 0.005 2.4 0.4 0.002 2 0 c

Point discharge rate 62 26.2 0.019 177 27.1 0.021 2621161 59.8 c

Point discharge TDS 110.3 46.7 0.025 299.5 46 0.028 110131 2.5 c

Sum 236.2 100 0.326(1) 651.5 100 0.041 4383960 100 c

Mean TDS 423 628 —c

a VAR 5 Variance.
b CV 5 Coefficient of variation of TDS concentration prediction.
c Model can not simulate TDS concentration over 10 000 mg/L.

Note: The remaining input parameters contribute ,1% to the variance.

Table 6—Contribution of key model input parameters to dissolved oxygen concentration variance.

Input parameter

Reach 2 element 8 Reach 5 element 7 Reach 6 element 19

VARa VARa % CVb VARa VARa % CVb VARa VARa % CVb

BOD decay rate 0 0 0 0.13 22 0.07 0.08 14.6 0.05

Reaeration rate coefficient 0.01 8 0.01 0.18 30.8 0.08 0.22 38.4 0.08

Temperature 0.0006 0.48 0.003 0.0097 1.65 0.02 0.008 1.39 0.02

Headwater flowrate 0.043 32.5 0.03 0.06 10.23 0.05 0.056 9.67 0.04

Headwater DO 0.004 2.73 0.008 0.0004 0.07 0.004 0.0002 0.03 0.002

Point discharge rate 0.053 39.8 0.03 0.068 11.6 0.05 0.072 12.31 0.05

Point discharge DO 0.022 16.7 0.02 0.008 1.31 0.02 0.01 1.70 0.02

Point discharge BOD 0 0 0 0.131 22.3 0.07 0.128 21.9 0.06

Sum 0.132 100 0.05(1) 0.59 100 0.15 0.58 100 0.14

Mean DO 7.2 5.3 5.7

a VAR 5 Variance.
b CV 5 Coefficient of variation of DO concentration prediction.

Note: The remaining input parameters contribute ,1% to the variance.
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uncertainty. The uncertainty of estimated concentrations of DO and

BOD resulting from model parameter or input variable uncertainty

was found to be significant. However, model parameters such as

reaeration-rate and BOD decay-rate coefficient and the model input

variables such as the point discharge, point-discharge BOD, and

headwater flowrate have a dominant effect on prediction un-

certainty. Reduction of the uncertainty in these parameters and

variables could significantly improve model prediction uncertainty

of DO and BOD. These results show that reliability analysis can

help water quality modelers and planners to quantify the reliability

of the water quality predictions and to carry out more efficiently

planned sampling and data collection programs to reduce model

prediction uncertainty.

Last, but not least, it should be emphasized that model prediction

uncertainty owing to parameter and variable uncertainty alone was

analyzed and no model uncertainty was taken into account.
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Table 7—Contribution of key model input parameters to biochemical oxygen demand concentration variance.

Input parameter

Reach 2 element 8 Reach 5 element 7 Reach 6 element 19

VARa VARa % CVb VARa VARa % CVb VARa VARa % CVb

BOD decay rate 0 0.2 0 0.195 38.5 0.09 0.213 4.5 0.04

Headwater flowrate 0 2 0 0.02 4.3 0.03 1.16 24.4 0.09

Headwater BOD 0 3.5 0 0 0 0 0 0 0

Point discharge rate 0 1.9 0 0.04 7.5 0.04 1.9 40 0.11

Point discharge BOD 0 92.3 1 0.25 48.8 0.1 1.48 31 0.1

Sum 0 100 2(1) 0.51 99 0.15 4.7 100 0.18

Mean BOD 0.02 5 12.2

a VAR 5 Variance.
b CV 5 Coefficient of variation of BOD concentration prediction.

Note: The remaining input parameters contribute ,1% to the variance.

Table 8—Comparison of ranking of key parameters
affecting estimated total dissolved solids concentrations
applying normalized sensitivity analysis and first-order
reliability analysis.

Reach-element Model parameter

Rank among four

parameters

estimated by

Normalized

sensitivity

analysis FORA

2–8 Headwater flowrate 3 3

Headwater TDS 4 4

Point discharge rate 2 2

Point discharge TDS 1 1

5–7 Headwater flowrate 3 3

Headwater TDS 4 4

Point discharge rate 2 2

Point discharge TDS 1 1

6–19 Headwater flowrate 2 2

Headwater TDS 4 4

Point discharge rate 1 1

Point discharge TDS 3 3

Table 9—Comparison of ranking of key parameters
affecting estimated dissolved oxygen concentrations
applying normalized sensitivity analysis and first-order
reliability analysis.

Reach-element Model parameter

Rank among

eight parameters

estimated by

Normalized

sensitivity

analysis FORA

2–8 BOD decay rate 7 8

Reaeration rate coefficient 6 4

Temperature 4 6

Headwater flowrate 2 2

Headwater DO 5 5

Point discharge 1 1

Point discharge DO 3 3

Point discharge BOD 8 7

5–7 BOD decay rate 6 3

Reaeration rate coefficient 5 1

Temperature 2 6

Headwater flowrate 3 5

Headwater DO 8 8

Point discharge 1 4

Point discharge DO 7 7

Point discharge BOD 4 2

6–19 BOD decay rate 7 3

Reaeration rate coefficient 5 1

Temperature 3 7

Headwater flowrate 2 5

Headwater DO 8 8

Point discharge 1 4

Point discharge DO 6 6

Point discharge BOD 4 2
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Table 10—Comparison of ranking of key parameters
affecting estimated biochemical oxygen demand
concentrations applying normalized sensitivity analysis
and first-order reliability analysis.

Reach-element Model parameter

Rank among

six parameters

estimated by

Normalized

sensitivity

analysis FORA

2–8 BOD decay rate 5 5

Temperature 6 —

Headwater flowrate 2 3

Headwater BOD 4 2

Point discharge 3 4

Point discharge BOD 1 1

5–7 BOD decay rate 5 2

Temperature 3 —

Headwater flowrate 4 4

Headwater BOD 6 5

Point discharge 2 3

Point discharge BOD 1 1

6–19 BOD decay rate 5 4

Temperature 4 —

Headwater flowrate 2 3

Headwater BOD 6 5

Point discharge 1 1

Point discharge BOD 3 2
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