
Engineering Water Quality Models and TMDLs
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Introduction

Over the past 75 years, engineers have developed water qu
models to simulate a wide variety of pollutants in a broad ran
of receiving waters. In recent years, these receiving water mo
are being coupled with watersheds, groundwater, bottom s
ments, and airsheds to provide comprehensive frameworks
dicting the impact of human activities on water quality. As T
omann ~1998! terms it, a ‘‘Golden Age’’ of water quality
modeling is upon us.

At face value, these developments should bode well for wa
quality assessments such as TMDLs~total maximum daily load-
ings!. However, if not conceived and implemented properly, mo
els could also detract from such efforts. The present paper
scribes some of these pitfalls as well as related opportunities

The discussion will be organized around the model devel
ment process. As in Fig. 1, water quality modeling is embedd
within the larger context of the TMDL decision process. The p
mary function of modeling is to provide a decision support mod
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that can be used in TMDL prescriptions; in particular, the mode
provides a means to predict water quality as a function of load
and system modifications.

The process@Fig. 1~b!# starts with model selection and devel-
opment. The latter relates to situations where existing models a
inadequate. After selecting or developing the model, existing dat
are used to construct a preliminary model application. This exer
cise should include thorough data mining to ensure that all pos
sible historical data are considered. For cases where adequa
historical data do not exist, additional data are collected. The
model is then calibrated by adjusting uncertain parameters so th
the model performs adequately. This is followed by a series o
confirmation tests. These typically involve applying the calibrated
model to cases that differ significantly from those with which the
model was calibrated. This is followed by an analysis phase t
assess model sensitivity and uncertainty. Finally, the model can b
integrated into a decision support system~DSS! to facilitate the
model’s use in decision making.

It should be stressed that although Fig. 1~b! defines a sequence
of events, the use of two-way feedback arrows on the left denote
that the process is adaptive. For example, after calibration,
might be necessary to collect additional data for confirmation
Similarly, an uncertainty analysis might be performed on the pre
liminary model in order to help focus the data collection and
Fig. 1. Water-quality-modeling process~b! within context of TMDL process~a!
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Fig. 2. Watershed/receiving water system
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among model complexity, required reliability, cost, and tim
Complexity refers to the model equations and mathematical s
ture. Cost relates primarily to data collection and parameter
mation.

The straight line in Fig. 3~a! represents the underlying assum
tion that, if the budget is unlimited, a more complex model w
be more reliable. In essence, as we add complexity to the m
~that is, more equations with more parameters!, we assume tha
sufficient funds are available to perform the necessary field
laboratory studies to adequately specify the additional parame
In fact, this assumption itself may not be true, because there
be limits to our ability to mathematically characterize the co
plexity of nature ~a kind of ecological uncertainty principle!.
However, though we may never be able to perfectly characte
a natural water system, we generally function under the no
that more and better information leads to more reliable mode

In reality, because we are invariably constrained by fund
we must make do with limited data. In such cases there are
extremes:~1! A very simple model will be so unrealistic that
will not yield reliable predictions, or~2! a very complex mode
will be so overparametrized that it outpaces available informa
and becomes equally unreliable because of parameter uncert
As in Fig. 3, there is an optimal model that is consistent with
available level of information.

At this point two other considerations must be imposed:
reliability and the complexity needed to solve the problem@Fig.
3~b!#. Clearly the model could be optimal, given the availa
data, yet not be sufficiently reliable for addressing the decis
For example, whereas a simple model might be adequate fo
sessing aesthetic impacts, a more complex model~and more sup-
porting data! might be needed to assess problems dealing w
public health.

Further, the model might be consistent with the available d
but not sufficiently complex to address management questi
Regulatory end points often drive this question. For exampl
model that simulates a single phytoplankton group as meas
by chlorophylla would not be adequate if nuisance algae such
cyanobacteria are the end point. Similarly, if nutrient export is
be managed on a farm-by-farm basis, a highly distributed dr
age basin model might be required rather than a simpler lum
approach. In such cases, additional complexity~along with more
data and information! would be necessary.

Finally, because they often involve legally mandated de
lines, TMDLs are extremely sensitive to the issue of time. T
has major implications for both establishing model credibility a
using the model to make effective decisions. As discussed be
y
Fig. 3. Model reliability versus complexity~redrawn from Chapra 1997!: ~a! Modeling isolated from decisions;~b! modeling as influenced b
decision context
calibration processes. Finally, new models might be adopted, n
cessitating that the entire process be repeated.

This paper addresses six particular areas related to the proce
model complexity, data and monitoring, reliability, uncertainty
decision support, and future investment. The discussion will b
limited in certain ways. The focus will be on the watershed
receiving water framework depicted in Fig. 2. Note that the gen
eral conclusions are equally relevant when the framework is e
panded to include other systems such as airsheds. The discus
will be further limited to the eutrophication/dissolved oxygen/hea
problem. Again, many of the conclusions should be general
relevant to other problems such as toxic contaminants and path
gens. Most of the discussion is focused on process or mechani
models based on momentum, heat, and mass balances. Som
sues related to statistically based empirical models will be a
dressed in the section on uncertainty.

Model Complexity

Progress in science and computing along with changing enviro
mental problems have allowed modelers to develop increasing
complex and comprehensive modeling frameworks~see reviews
in Chapra 1997 and Thomann 1998!. Unfortunately, this often
leads to the common misconception that complex models are n
essarily superior to simpler approaches. In fact, as illustrated
Fig. 3, the choice of a water quality model involves trade-off
T © ASCE / JULY/AUGUST 2003
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many systems will have insufficient historical data to yield cre
ible results. Significant time will then be required for addition
data collection, and process studies required for model calibra
and confirmation. Such a case recently occurred in the deve
ment of the Delaware Estuary PCB TMDL~Thomas J. Fikslin,
Delaware River Basin Commission, personal communicatio
2002!. A major sampling effort was scheduled for the spring a
summer of 2002 in order to characterize and model both hi
flow and low-flow conditions. Because of drought conditions,
sufficiently high flow did not occur and the sampling effort ha
now been extended through spring 2003. Although a six-mo
extension might seem minimal, it looms large because the p
liminary TMDL is to be developed and reviewed by Decemb
2003.

Adding unnecessary model complexity also increases co
puter simulation time. This could have a deleterious effect on
ability to estimate the uncertainty of predictions using techniqu
such as Monte Carlo analyses. Further, less complex and fa
models will expedite time-intensive tasks such as calibration, c
firmation, sensitivity analysis, scenario analysis, optimizatio
and real-time control.

Because of all the above factors, it must be recognized that
problem needs and the available resources must drive the ch
of model, rather than the pursuit of model complexity for its ow
sake. An important consideration in this regard is that all wa
bodies should not be modeled in a single fashion. Just as you
not need a high-performance racecar to go out and buy groce
some systems will require coarser approaches whereas others
demand more complex methodologies.

Finally, modeling is a process, not an end. Given the pres
state of data, an adaptive approach to modeling would start w
simpler models at the initial phases and then progress to m
complex frameworks as additional data are collected and as m
focused remedial measures are assessed.

Models and Data

Models are only as good as the information upon which they
based. For the purposes of the present discussion, this informa
can be divided into science and data.

Science represents numbers and mathematical constructs
reflect scientific understanding. These consist of default para
eters~e.g., Bowie et al. 1985; Schnoor et al. 1987; EPA 199!,
model constructs~the science embedded in the model equation!,
and modeled parameters. The latter are values that are calcu
with formulations based on scientific studies~for example, evapo-
transpiration and reaeration formulas!.

Data are numerical values that are site-specific and obtai
by direct measurements. These consist of spatial data~topology,
topography, soil types, land use, areas, morphometry!, forcing
functions ~meteorology, point loads!, state data~temperature,
flow, concentration, water transparency!, and rate data~direct
measurement of model parameters such as settling velocity, S
etc.!.

Although both science and data bear on model credibility, t
present discussion focuses on data. In particular, the forcing fu
tion and state data that figure prominently in model calibrati
and confirmation are emphasized. This data can be broken
three categories: monitoring data, old model data, and new mo
data.

Monitoring refers to data that are measured on a routine ba
for reasons other than modeling~e.g., compliance or detection!.
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Although such data can be of great value to TMDL modeli
there are two problems that can detract from their utility. Fi
because they are not aimed at supporting models, the wrong
ables might be measured. For example, most current monito
plans originated from the need to assess the performanc
wastewater treatment plants. Hence, treatment-oriented pa
eters such as carbonaceous BOD~and in some cases, 5-day BOD!
are frequently used to characterize organic carbon. As desc
by Chapra~1999!, current models~e.g., Cerco and Cole 1993
Connolly and Coffin 1995! are carbon based and require dir
measurement of organic carbon species~e.g., labile dissolved car
bon, refractory dissolved carbon, and particulate organic carb!.
In such cases, BOD measurements are inadequate.

Second, the monitoring data may not be collected properl
space and time. For example, a traditional monitoring prog
might situate sampling locations below point-source inflows.
though such information is valuable, models evaluating nonp
sources must be distributed more evenly to resolve more gra
spatial variations in water quality. The same holds for temp
monitoring. For example, dissolved oxygen might be tradition
sampled at a single time during daylight hours. For systems
strong diurnal variations, critical oxygen levels usually occu
dawn. If a model simulated diurnal changes, a more effec
sampling strategy might be to~1! install a continuous monitorin
device or~2! sample at dawn and late in the afternoon~see Fig.
4!.

The use of monitoring data is also complicated by the fact
multiple agencies with differing mandates collect such data~Table
1!. For example, drinking water utilities routinely measure qu
tities such as UV-254, turbidity, and TOC in order to assess
infection byproducts and bacterial contamination. In contr
many do not sample the standard limnological data necessa
model water quality~species of carbon, nutrients, algae, etc.!. It
should be noted that water utilities are increasingly looking
watershed controls as a means to improve the quality of their
water. Thus, beyond their utility for TMDLs, water-qualit
oriented data would prove directly useful in such efforts.

The second class of data is that collected to support past
eling studies. Such studies were often conducted to assess o
and/or eutrophication during the 1960s and 1970s. These dat
are often imperfect, in the sense that they might not be compa
with present analytical and modeling standards. However,

Fig. 4. An example of how model resolution influences sampl
strategies. If diurnal variations of state variables are being simul
adequate temporal sampling must be conducted to capture such
ability. This may cause data collectors to install continuous samp
devices or to sample at several times of day to capture both the
and the range.
PLANNING AND MANAGEMENT © ASCE / JULY/AUGUST 2003 / 249
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Table 1. Different Measures of Organic Carbon Employed by Fo
Groups

Type Measures of organic carbon

Water quality compliance CBOD, TOC
Sewage treatment effluent COD, CBOD
Drinking water UV254, TOC
Modern WQ model labile DOC, refractory POC,

detrital POC, algal POC

Note: CBOD5carbonaceous biochemical oxygen demand; TOC5total
organic carbon; COD5chemical oxygen demand; UV2545absorption of
ultraviolet light at 254 nm; DOC5dissolved organic carbon; POC
5particulate organic carbon.
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can still have great value for model assessment. In particular, t
might prove extremely useful in model confirmation, as discuss
in the next section.

The final class is new data collected expressly for model s
port. Although these would seem to be the most reliable, pr
lems can occur because modelers are sometimes not include
the sampling design process. In such cases, the correct varia
and sampling frequencies required for the model may be omitt
This sometimes occurs because agency monitoring groups
employed to collect the data. Because they are set up to mea
traditional variables, they are sometimes unaware that the mo
ers might require differing and additional data. It can also occ
because the modeler is hired after the data collection effor
already underway.

It should be noted that the question of sampling design is
‘‘two-way street.’’As mentioned above, monitoring groups shou
be sensitive to the needs of the modelers. On the other ha
modelers should not propose state variables that are difficul
impossible to measure. For example, it makes no sense to m
six species of phosphorus if it is economically infeasible or o
erationally impossible for typical laboratories to measure them
should be stressed that purely scientific models developed
exploratory purposes are not necessarily subject to this constr

It should also be stressed that along with adequate state d
accurate estimates of the model forcing functions are equ
critical. If the loadings are highly inaccurate, model calibratio
and confirmation become meaningless exercises.

Some general conclusions regarding modeling and data col
tion:
• Modelers should be an integral part of the sampling des

process.
• All modelers should use the same data. The most conflic

analyses occur when modelers use different data. Any data
bear on the TMDL decision process should be available to
parties involved in the process.

• Data should be archived with accompanying quality assura
information ~precision, method, etc.!.

• Data collection should be coordinated among different colle
tors. Although each entity must collect data that support
own mission, additional parameters might be included at m
ginal cost in order that the data sets are more broadly use

Model Calibration and Confirmation

Once adequate data sets are compiled, the model should be
and compared with state data. The initial runs can be made w
default parameters and any site-specific measured process
that are available~e.g., reaeration rates, settling velocities, etc!.
.
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Invariably this will result in a poor ‘‘fit’’ to the data. At this point
the model parameters are adjusted to optimize agreement bet
the model output and the state data. If the final fit is deem
adequate, the model is considered calibrated. Assessing th
equacy of a model fit involves graphical comparisons and st
tical tests. Because the subject has been discussed in great
elsewhere~Reckhow and Chapra 1983a; Berthoux and Bro
2002; McCuen and Snyder 1986; etc.!, I will not cover it here.

When the submodels composing the framework are inde
dent, the calibration process can be conducted sequentially~Fig.
5!. This sequence is dictated by the natural information flow
tween the major submodels: watershed→receiving water. Simi-
larly, within each submodel there is a hierarchy dictated by b
information flow and the uncertainty of the estimates. First,
hydraulic model~flows! would be calibrated. Next, heat and co
servative tracers can be calibrated to~1! provide an independen
check on the hydraulics, and~2! demonstrate that the constitue
transport is adequate. Finally, the least certain part of
process—the water quality component would be simulated. N
that in stratified systems, temperature and tracers can signific
affect the hydraulics, and hence the three must be calibrate
multaneously. The important point is that once the physical p
cesses are calibrated, they should be not modified during
water quality calibration.

Three techniques can greatly enhance the model calibra
process:
• Sensitivity analysis. The model parameters can be perturb

and the variations in the state variables observed. A numbe
techniques are available for this, including first-order er
analysis, Monte Carlo simulation, and generalized sensiti
analysis ~Spear and Hornberger 1980!. The objective is to
identify which parameters have the greatest impact on
state variables. This information can improve manual calib
tion by guiding the modeler to focus on the most sensit
parameters. It can also influence decisions regarding direct
measurements, as described next.

• Direct rate measurements. As stated above, the convention
approach to model calibration involves adjusting uncert
model parameters such that a model output time series c
pares favorably with state-data time series. Another appro
is to directly measure model parameters so that they are
T © ASCE / JULY/AUGUST 2003
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mated with greater precision and accuracy. Common exam
include reaeration rates, settling velocities, primary produc
rates, community respiration rates, and sediment oxygen
nutrient fluxes. If these rates can be ‘‘pinned down’’ via fi
or laboratory experiments, the model’s degrees of freedom
be reduced. The intent is to reduce the degrees of free
sufficiently that fewer parameters are subject to adjustme
Finally it should be noted that autocalibration might ha

some utility in guiding and informing the calibration proce
This involves setting up bounds for automatically adjusting mo
parameters~within constrained ranges! to optimize some objec
tive function that reflects goodness of fit~e.g., least squares!. For
systems with a large data uncertainty, one difficulty with s
approaches is that the resulting parameters often bump up a
the constraints, suggesting that the optimum lies outside th
rameter space. Nevertheless, because of advances in com
speed, the value of such automatic calibration approaches s
be explored.

Once the model is calibrated, its reliability must be es
lished. This process has traditionally been mislabeled as ver
tion or validation. As pointed out by Reckhow and Cha
~1983b!, validation ~the ascertainment of truth! is inconsisten
with the logic of scientific research. The only real validation o
model is confirmation by independent observations~Anscombe
1967!. The testing of scientific models is considered an induc
process, which means that, even with true premises we can a
assign high probability to the correctness of the model. Thus
termsconfirmationor corroborationare preferred~Reckhow and
Chapra 1983b; Oreskes et al. 1994!.

The purpose of confirmation is not to validate that the mod
‘‘true’’ but rather to ensure that the model predictions are con
ered sufficiently credible for decision making. The fact that m
els can never be absolutely verified has significant policy im
cations. By admitting that models are approximations, it neg
stall tactics based on the premise that remedial action be in
nitely postponed because models can never be demonstrated
absolutely true.

From the standpoint of practical applications, the issue
model confirmation then reduces to two considerations: as
ment of ‘‘goodness’’ of fit and required tests. As noted previou
the former has been addressed in detail elsewhere. The latte
be discussed here.

In essence, there is a hierarchy of tests that can be appli
• Level 0: Application to a case almost identical to the calib

tion case. This is merely additional calibration disguised
confirmation. It is next to useless, unless the new case
One possible explanation for a failure would be that the o
nal model was highly influenced by its initial conditions. T
can commonly occur for long residence time systems suc
large lakes.

• Level 1: Application to a case with different meteorology th
the calibration case—for example, a wet year versus a dry
or a cold year versus a warm year. Such confirmation usu
yields adequate corroboration for the physical model. In a
tion, it may partly corroborate the water quality model. S
would be the case for systems dominated by meteorologi
driven nonpoint loads, which are typically highly influenc
by runoff.

• Level 2: Application to a case with significantly different loa
ings. This provides a means to corroborate the model’s a
tive mechanisms~e.g., species shifts, long-term shifts in se
ment oxygen, and nutrient fluxes! as a result of loadin
changes.
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In practice, it is easier to obtain the proper data to confirm
physical model~Level 1!. Given a three- to five-year observatio
period, it is likely that meteorological conditions would vary su
ficiently to assess whether the hydraulics, tracers and temper
are simulated adequately.

Level 2 confirmation is more problematic. As with the physi
the intent is to simulate data sets that differ significantly from
calibration set. As noted, for systems dominated by nonp
sources, it is possible that physically different years would exh
different loadings. However, it is less likely that these meteo
logically induced load variations would mimic the reductio
needed to bring the system to the desired quality.

This is especially vexing when the water body is far from
desired target. This stems from the fact that the relationship
tween trophic state and loadings is nonlinear. If the trophic c
tinuum were linear, one would expect that a 50% reduction
loadings would result in a 50% improvement in receiving wa
quality. In fact, nonlinear mechanisms, e.g., algal limitation~tem-
perature, nutrients, and light!, sediment-water interactions, an
species shifts are nonlinear. And, as depicted in Fig. 6, the la
the load reduction, the more the curvature comes into play.

Today, nonlinear algal limitation is included in most mode
and rational sediment-water submodels~e.g., Di Toro et al. 1990
Di Toro and Fitzpatrick 1993; Di Toro 2001! are increasingly
being employed. The remaining issue is the inclusion of adeq
constructs to predict species shifts. Although some models
include multiple phytoplankton groups~and a smaller number in
clude attached plants!, very few systematic tests have been co
ducted to corroborate whether these formulations adequa
simulate species shifts across trophic states.

In rare cases, data are available for both the polluted case
either the prepolluted or postcleanup states. Lake Washingto~in
Seattle! represents a classic example~Edmondson 1994!. The lake
was enriched with increasing phosphorus loading from 1941
1963. Over this period, the abundance of algae increased sev
fold. Further, the species composition became dominated by
anobacteria~in particular,Oscillatoria!, which were inedible by
higher organisms. In the period 1963–1968, sewage was dive
around the lake. As a result, phosphorus concentration and
toplankton abundance decreased. TheOscillatoria essentially dis-
appeared and were supplanted by edible diatoms and green
The zooplankton assemblage became dominated byDaphnia, a
filter-feeding zooplankton that is extremely efficient at clear
the water of edible phytoplankton. Hence, the water clarity
proved to a greater degree than would be expected.

Fig. 6. Relationship between trophic state and loadings for conv
tional pollutants. More pristine systems tend to be more sensitiv
load changes than highly degraded systems.
PLANNING AND MANAGEMENT © ASCE / JULY/AUGUST 2003 / 251
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For calibrated model applications where the end points invo
long-term water clarity and dominant species, applying them
systems like Lake Washington could provide a kind of cros
sectional confirmation. Such applications would involve La
Washington’s system-specific data, but with kinetic paramet
taken from the calibration run. If the new run adequately predi
the observed changes, such an exercise greatly strengthen
model’s credibility.

This type of cross-sectional confirmation of longitudinal mo
els can be generalized to the notion of benchmark data sets. S
sets could be developed for the range of water bodies~e.g., lakes,
impoundments, streams, rivers, estuaries! and water quality prob-
lems ~eutrophication, pathogens, toxics, sediments, etc.! for
which TMDLs are actively being pursued.

This idea can be further systematized by developing a con
mation portfolio for all modeling software used for TMDLs. Suc
a portfolio could comprise case studies~along with their input
files! demonstrating that the model works adequately well for
systems and water quality problems for which it was designed
peer reviewed, the portfolio could also serve as a source of be
marks against which new models could be tested. Further, a d
mented track record of the model’s general success would
crease confidence in its application to cases where confirma
data were sparse.

As described next, water quality models should include e
mates of model uncertainty. Thus, the confirmation might a
include special cases/watersheds/waterbodies where error ana
was conducted for each of the large process models. This wo
at least provide some official, reported estimate of error. Wh
this would not be quite the same as a site-specific error analy
it would provide the model user with some sense for the unc
tainty.

Finally, after the model has been calibrated and confirmed,
model can then be recalibrated to the entire data set to obtai
optimal fit ~Reckhow and Chapra 1983a!. By using all the avail-
able data, this pooling of information further strengthens the m
el’s reliability in the actual TMDL prescription.

Models and Uncertainty

Several investigators have made persuasive arguments for inc
ing uncertainty as an essential and explicit part of the water q
ity modeling process, and the TMDL process in particular~e.g.,
Reckhow 1977, 2003; Reckhow and Chapra 1983a; NRC 20
Beck 1987!. Most engineers and scientists agree with this arg
ment because we all know that~1! our models are imperfect and
that ~2! these imperfections are best expressed probabilistica
At minimum, this means that estimates of uncertainty accomp
all model predictions and that the margin of safety~MOS! should
be formulated probabilistically~Reckhow 2003!.

That said, performing a complete error analysis of a proce
oriented water quality model is not trivial. The fact that very fe
have been conducted~most notably by Di Toro and van Strate
1979 and van Straten 1983! supports this contention. Hence, be
cause of the heavy data demands of a proper error analysis~i.e.,
considering both parameter and model error, as well as cov
ance! and the severe time constraints for TMDL development
is simply unrealistic to require that such complete analyses
implemented as part of every TMDL process. Hence, Reckh
~2003! has suggested that, in the short term, more practical
incomplete uncertainty analyses could be conducted and inco
rated into the decision process.
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In the long term, he suggests, models might be restructure
that a relatively complete error analysis is feasible. Although s
approaches could prove extremely useful, the suggestion to
structure modeling bears some scrutiny lest it be misinterprete
misconstrued. At face value, restructuring might be taken to im
that simpler empirical/statistical approaches would supplant c
plex process-oriented/numerical models. Although the statist
approaches by nature greatly expedite a complete uncerta
analysis, something is lost in the bargain.

By their nature, empirical models are slaves to their train
data sets. For cross-sectional models~based on data from man
water bodies!, this means that training data sets must span
entire range of decision alternatives. For example, a model
tended to evaluate nutrient load should be trained on data s
ning the full range of trophic states. Otherwise, predictio
amount to highly uncertain extrapolations.

Although effective cross-sectional models can be develope
such a manner~particularly when developed regionally!, pros-
pects seem less sanguine for longitudinal models, that is, th
based on time-series data from a single water body. Unless
tailed historical data sets spanning polluted and unpolluted c
ditions are available, it would seem that the resulting predicti
would again involve extrapolation.

Such models would also seem limited for highly distribut
systems like rivers and estuaries with multiple inputs. In parti
lar, the ability of such models to disaggregate the effects of in
vidual point and nonpoint sources would seem to be problema
The latter might be particularly difficult, because their depe
dence on precipitation might make them covary significantly.

These deficiencies suggest that whereas empirical approa
might yield more precise predictions~as reflected by lower uncer
tainty!, they might be less accurate~as reflected by their ability to
predict central tendency!. Conversely, the complex process mo
els might yield more accurate but more uncertain predictions

Regardless, it is clear that both approaches have utility
will be important over the short term~three-year horizon!. There
will certainly be problem contexts where empirical approach
will be superior to process models, and vice versa. In fact, wh
ever they both have been developed, empirical approaches sh
be used in tandem with process-based models in a compleme
rather than in competitive fashion. This occurred 25 years
when empirical ~Vollenweider et al. 1980!, simple lumped
mechanistic~Chapra 1980!, and highly developed process mode
~Thomann and Segna 1980; Di Toro 1980! were used to develop
a consensus regarding Great Lakes phosphorus control~Bierman
1980!.

For the long term, research on model uncertainty should
increased with particular emphasis on rationalizing the margin
safety, facilitating uncertainty analysis through simpler mode
and investigating how Bayesian approaches might be cons
tively employed. In addition, research should be directed tow
practical and feasible approaches to incorporate uncertainty
process-oriented, mechanistic models. Finally, intermediate
brid approaches could prove a useful means to capture
strengths of both types. These would consist of simpler proc
models that would account for key mechanisms, but which wo
be sufficiently simple to accommodate a more thorough
feasible uncertainty analysis~e.g., Chapra 1977; Chapra and Ro
ertson 1977; Walker 1985, 1986; Chapra and Canale 1991; H
et al. 1992; Borsuk et al. 2001!. Such models might be particu
larly useful in the sort of adaptive implementation scheme s
gested in this volume by Reckhow~2003!.
T © ASCE / JULY/AUGUST 2003



Fig. 7. Information flow between components in decision-making process:~a! Historical and~b! present. Note that the ‘‘decision makers’’ in~b!
refer to both regulatory agencies and stakeholders.
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By contrast, decision support interfaces should be designed f
the needs of decision makers. In particular, they should enhan
exploration of the decision space. For example, they would allow
users to readily modify such forcing functions as loads and
weather. In contrast, users would not be permitted to chang
model parameters established during the calibration/confirmatio
phases. In the same vein, scenario generation tools would be
cluded so that users could conveniently assess varieties of ma
agement options.

As a final observation, although there has been extensive r
search on the use of optimization algorithms for decision suppo
in a variety of water quality management contexts, including
wasteload allocation of point sources of pollution~Thomann
1972; Loucks et al. 1981!, there has been very little attention
given to the problem of integrating optimization algorithms into
the TMDL problem. In other words, the very essence of the
TMDL decision problem has yet to be cast as a decision problem
Including an optimization component in DSS to allow cost-
effective management scenarios to be identified could do this.

Modeling Infrastructure

Thomann’s~1998! ‘‘Golden Age’’ may not be realized if sound
infrastructure is not in place to support the modeling process. T
date, most modeling support has been directed toward softwa
development~e.g., BASINS!. Equally important are software sup-
port, modeling institutions, and human expertise infrastructure.

Software Support

Historically, many of our major water quality frameworks have
been developed as spin-offs from high-profile modeling project
~e.g., Ambrose et al. 1988; Cerco and Cole 1993!. Others were
developed by consulting firms, academia, and government an
subsequently moved into the public domain. Over the years, the
models have been archived, maintained, and updated by vario
government entities, such as the U.S. Environmental Protectio
Agency’s Center for Exposure Assessment Modeling~CEAM!, in
Athens, Georgia, and the Army Corps’ Waterways Experimen
Station ~WES! in Vicksburg, Mississippi. Unfortunately, these
centers have not always been adequately funded to support th
missions. Increased use and software complexity of water quali
models have exacerbated this problem. As a consequence, mo
updates and upgrades are presently not implemented quick
enough to meet user needs and to keep pace with scientific a
vances.
As stated previously, the use of models for TMDLs is not
‘‘one size fits all’’ type of endeavor. Although the inclusion of
uncertainty is a laudable goal, it would be tragic if the issu
undermines the great value of process models for TMDL prescr
tion. This is particularly vexing in light of history. Despite the fac
that little or no uncertainty analyses were conducted, proce
oriented models have been used effectively over the past 75 ye
to determine load allocations for a broad range of pollutants in
wide range of receiving waters. Although admittedly imperfec
they have been deemed as sufficiently sound engineering tools
rationalizing water quality management. It would seem ironic
healthy discussions of uncertainty were misconstrued as a ne
tion of this historical fact.

Decision Support

When computers were not ubiquitous and water quality problem
dealt primarily with point-source discharges, the modeler wa
usually at the center of the decision process@Fig. 7~a!#. Thus, the
modeler acted as the interface between the model analysis an
single decision-making agency.

In the late 1980s, environmental and water resource engine
began developing decision support systems, or DSS~e.g., Loucks
et al. 1985; Fedra and Loucks 1985; Loucks and Fedra 198
Reitsma et al. 1996; Chapra and Canale 1987!. Due primarily to
computer advances, a DSS can now be developed to allow de
sion makers and stakeholders to interact more intimately and
ficiently with the modeling environment@Fig. 7~b!#. Today, com-
puter improvements allow much of the modeling process to b
integrated electronically~e.g., Chen et al. 1999!. By designing a
graphical user interface expressly designed for decision makin
the modeler is no longer at the center of the process. Rather,
decision makers~including stakeholders! can be empowered to
explore the decision space in a more transparent and direct fa
ion.

Before proceeding, it should be stressed that the simple fa
that a model has an interface does not mean that it is a decis
support framework. In fact, model interfaces are often written fo
modelers rather than to support the decision process. Model
interfaces are usually motivated by the need to perform simu
tions in order to calibrate and confirm the model. Thus, the
might include tools to expedite the preparation of input files, di
play graphs and statistical comparisons of model output and v
sus data, and perform sensitivity analyses.
PLANNING AND MANAGEMENT © ASCE / JULY/AUGUST 2003 / 253
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A specific example is the QUAL2E model, which has not be
modified since 1987~Brown and Barnwell 1987!. Hence this
valuable framework, which is part of BASINS, is unsuitable f
modeling shallow streams dominated by attached plants. S
larly, although a viable framework for modeling sediment-wa
fluxes was published nearly 10 years ago~Di Toro and
Fitzpatrick 1993!, this mechanism is just now being integrate
into the publicly available models.

No software company in the world would stay in busine
operating in such an ad hoc fashion. Government agencies sh
establish some centralized mechanism responsible for ma
nance, upgrading, and quality assurance of their software p
ucts. These groups should consist of modelers as well as softw
engineers.

Institutions

As stated above, government agencies have decommissioned
emphasized, or dispersed much of their water quality center
excellence. The most notable of these has been the Cente
Exposure Assessment Modeling~CEAM!, in Athens, Ga. The
government should reestablish and strengthen such centers.
would have a number of benefits, including quality control, sta
dardization, and maintenance~including updates!. In addition, a
modeling center could have a research and development com
nent that would allow scientific advances to be more rapidly
tegrated into modeling practice.

State agencies should assemble their own modeling tea
These teams should guide or implement models developed
their particular state’s TMDLs. In addition, they should play th
critical role of archiving models and data and maintaining a
upgrading them for future applications.

Finally, the old idea of basin commissions might be revive
These arose in the 1960s to acknowledge that watersheds
the most rational vehicles to organize water quality managem
In addition, they were extremely useful in managing interst
waters. Such entities are arising today in an ad hoc fashion.
example, the Charles River Watershed Association, in Massa
setts, has a technical stewardship function on that watershed.
group conducts sampling and modeling for the watershed. M
importantly, they serve as a vehicle to maintain the system’s lo
term institutional data and modeling memory.

Expertise

Water quality modeling is not a ‘‘point-and-shoot’’ endeavor. N
matter how advanced the software, modelers must marshal s
knowledge, experience, and good judgment in order to be ef
tive. As Di Toro and Thuman~2001! put it:

... water-quality models are not simple, straightforward en-
gineering calculations. The methodology has not pro-
gressed to the handbook stage, and perhaps the followin
analogy is useful: Models are less like a radio—plug it in,
turn it on, and it produces beautiful music—and more like a
violin. Only a talented and well-trained violinist can pro-
duce beautiful music.
Unfortunately, today there is a serious deficiency in wat

quality-modeling expertise. The expertise deficiency is due t
number of factors. Because of a lack of funding of academ
modeling research over the past 20 years, few universities o
graduate programs specializing in water quality modeling. F
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thermore, many professionally oriented training courses em
size the use of tools rather than the art and science of mode
Because models are becoming easier to use, there are curre
large group of ‘‘modelers’’ who are essentially button-pushers

In the short term, several suggestions might help reverse
trend:
• Modeling workshops should place increased emphasis

modeler education, rather than model operation. Suffic
time should be devoted to theory so that modelers unders
the inner workings of the software implementations. Such
plication issues as data analysis, calibration/confirmation,
interpretation of model sensitivity and uncertainty analy
could be stressed.

• Guidelines for the assessment of models and specific m
applications should be developed. These should be sufficie
flexible to allow different modeling approaches but structu
enough to establish standards for assessing quality.
The long-term prospects depend upon the government and

versities recognizing that environmental modeling goes well
yond software development. From the government’s perspec
one idea would be to direct more graduate traineeships and
lowships toward environmental modeling. Increased funding
support of modeling science would begin to encourage univ
ties to generate the modeling graduate students required to s
the discipline.

Conclusion

An old joke ~Chapra and Reckhow 1983! goes like this: A scien
tist, an engineer, and a lawyer were asked the question. ‘‘Wh
two plus two?’’ The scientist immediately answered: ‘‘Two pl
two equals four.’’ The engineer shook her head and retorted: ‘‘
proximately two plus approximately two equals approximat
four.’’ Both then turned to the lawyer and demanded, ‘‘Wha
your answer? What is two plus two?’’ The lawyer stared back
calmly replied: ‘‘Well, what would you like it to be?’’

The joke may be old, but the sentiment remains the same
has always been the case, engineers~and their engineering TMDL
models! find themselves as the moderators between truth-see
scientists and answer-seeking policymakers and stakeho
Over the next 10 to 15 years, modelers could make a major
tribution toward helping disparate groups reach consensus re
ing the quality of their watersheds.

As I hope this paper has made clear, water quality mode
should not be allowed to become a commodity industry where
‘‘low bid’’ rules the day. Rather, it is an academics-based di
pline with a long history of intellectual development and scho
ship, one that requires long-term nurturing and investment t
sustainable. Modeling itself is an expertise that is acqu
through education and experience—and merely generating
bers does not a modeler make. Only by recognizing these
will the Golden Age be realized.
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