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The proces$Fig. 1(b)] starts with model selection and devel-
opment. The latter relates to situations where existing models are
Introduction inadequate. After selecting or developing the model, existing data
are used to construct a preliminary model application. This exer-
Over the past 75 years, engineers have developed water qualitcise should include thorough data mining to ensure that all pos-
models to simulate a wide variety of pollutants in a broad range sible historical data are considered. For cases where adequate
of receiving waters. In recent years, these receiving water modelshistorical data do not exist, additional data are collected. The
are being coupled with watersheds, groundwater, bottom sedi-model is then calibrated by adjusting uncertain parameters so that
ments, and airsheds to provide comprehensive frameworks prethe model performs adequately. This is followed by a series of
dicting the impact of human activities on water quality. As Th- confirmation tests. These typically involve applying the calibrated
omann (1998 terms it, a “Golden Age” of water quality model to cases that differ significantly from those with which the

modeling is upon us. model was calibrated. This is followed by an analysis phase to
At face value, these developments should bode well for water assess model sensitivity and uncertainty. Finally, the model can be
quality assessments such as TMDastal maximum daily load- integrated into a decision support systébsS to facilitate the

ings). However, if not conceived and implemented properly, mod- model’s use in decision making.

els could also detract from such efforts. The present paper de- It should be stressed that although Fi¢h)ldefines a sequence

scribes some of these pitfalls as well as related opportunities.  of events, the use of two-way feedback arrows on the left denotes
The discussion will be organized around the model develop- that the process is adaptive. For example, after calibration, it

ment process. As in Fig. 1, water quality modeling is embedded might be necessary to collect additional data for confirmation.

within the larger context of the TMDL decision process. The pri- Similarly, an uncertainty analysis might be performed on the pre-

mary function of modeling is to provide a decision support model liminary model in order to help focus the data collection and
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among model complexity, required reliability, cost, and time.
Complexity refers to the model equations and mathematical struc-
/ ture. Cost relates primarily to data collection and parameter esti-
mation.
\ / The straight line in Fig. &) represents the underlying assump-
& ¥ \ \ \ / tion that, if the budget is unlimited, a more complex model will
be more reliable. In essence, as we add complexity to the model
i \ (that is, more equations with more parametevge assume that

i dr,:l:s'?,? © ) — i sufficient funds are available to perform the necessary field and
i /? water | Iaboratory studies to_ade_quately specify the additional parameters.
i i In fact, this assumption itself may not be true, because there may
i ,/ i be limits to our ability to mathematically characterize the com-
! rg - i plexity of nature(a kind of ecological uncertainty principle
L groundwater <~ sediments J However, though we may never be able to perfectly characterize
- T g a natural water system, we generally function under the notion
watershed recelving water that more and better information leads to more reliable models.

In reality, because we are invariably constrained by funding,
we must make do with limited data. In such cases there are two
extremesi(1) A very simple model will be so unrealistic that it
calibration processes. Finally, new models might be adopted, ne-Will not yield reliable predictions, of2) a very complex model
cessitating that the entire process be repeated. will be so overparametrized that it outpaces available information

This paper addresses six particular areas related to the proces@nd becomes equally unreliable because of parameter uncertainty.
model complexity, data and monitoring, reliability, uncertainty, AS in Fig. 3, there is an optimal model that is consistent with the
decision support, and future investment. The discussion will be available level of information.
limited in certain ways. The focus will be on the watershed/ At this point two other considerations must be imposed: the
receiving water framework depicted in Fig. 2. Note that the gen- reliability and the complexity needed to solve the problgfiy.
eral conclusions are equally relevant when the framework is ex- 3(0)]. Clearly the model could be optimal, given the available
panded to include other systems such as airsheds. The discussiofiata, yet not be sufficiently reliable for addressing the decision.
will be further limited to the eutrophication/dissolved oxygen/heat For example, whereas a simple model might be adequate for as-
problem. Again, many of the conclusions should be generally S€ssing aesthetic impacts, a more complex méatel more sup-
relevant to other problems such as toxic contaminants and patho4orting data might be needed to assess problems dealing with
gens. Most of the discussion is focused on process or mechanisti®ublic health.
models based on momentum, heat, and mass balances. Some is- Further, the model might be consistent with the available data,
sues related to statistically based empirical models will be ad- but not sufficiently complex to address management questions.
dressed in the section on uncertainty. Regulatory end points often drive this question. For example, a

model that simulates a single phytoplankton group as measured

by chlorophylla would not be adequate if nuisance algae such as
Model Complexity cyanobacteria are the end point. Similarly, if nutrient export is to

be managed on a farm-by-farm basis, a highly distributed drain-
Progress in science and computing along with changing environ-age basin model might be required rather than a simpler lumped
mental problems have allowed modelers to develop increasinglyapproach. In such cases, additional completgtypng with more
complex and comprehensive modeling framewadidee reviews data and informationwould be necessary.
in Chapra 1997 and Thomann 199&nfortunately, this often Finally, because they often involve legally mandated dead-
leads to the common misconception that complex models are necdines, TMDLs are extremely sensitive to the issue of time. This
essarily superior to simpler approaches. In fact, as illustrated in has major implications for both establishing model credibility and
Fig. 3, the choice of a water quality model involves trade-offs using the model to make effective decisions. As discussed below,

Fig. 2. Watershed/receiving water system
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Fig. 3. Model reliability versus complexityredrawn from Chapra 1997(a) Modeling isolated from decisiongb) modeling as influenced by
decision context
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many systems will have insufficient historical data to yield cred- DO 20¢
ible results. Significant time will then be required for additional (mg/L)
data collection, and process studies required for model calibration

and confirmation. Such a case recently occurred in the develop-

ment of the Delaware Estuary PCB TMDOIThomas J. Fikslin, 121
Delaware River Basin Commission, personal communication,
2002. A major sampling effort was scheduled for the spring and 81
summer of 2002 in order to characterize and model both high-
flow and low-flow conditions. Because of drought conditions, a 41
sufficiently high flow did not occur and the sampling effort has

now been extended through spring 2003. Although a six-month 0
extension might seem minimal, it looms large because the pre- 0 6 12 18 24
liminary TMDL is to be developed and reviewed by December Time (hrs)

2003.

Adding unnecessary model complexity also increases com-
puter simulation time. This could have a deleterious effect on the
ability to estimate the uncertainty of predictions using techniques
such as Monte Carlo analyses. Further, less complex and faste
models will expedite time-intensive tasks such as calibration, con-
firmation, sensitivity analysis, scenario analysis, optimization,
and real-time control.

Because of all the above factors, it must be recognized that theAIthough such data can be of great value to TMDL modeling,
problem needs and the available resources must drive the choiCghere are two problems that can detract from their utility. First,
of model, rather than the pursuit of model complexity for its own pecause they are not aimed at supporting models, the wrong vari-
sake. An important consideration in this regard is that all water gpjes might be measured. For example, most current monitoring
bodies should not be modeled in a single fashion. Just as you doyjans originated from the need to assess the performance of
not need a high-performance racecar to go out and buy grocerieSy astewater treatment plants. Hence, treatment-oriented param-
some systems will require coarser approaches whereas others Wilkters such as carbonaceous B@Rd in some cases, 5-day BOD
demand more complex methodologies. _ are frequently used to characterize organic carbon. As described

Finally, modeling is a process, not an end. Given the presentpy chapra(1999, current modelge.g., Cerco and Cole 1993;
state of data, an adaptive approach to modeling would start with Connolly and Coffin 1995are carbon based and require direct
simpler models at the initial phases and then progress t0 morémeasyrement of organic carbon species., labile dissolved car-
complex frameworks as additional data are collected and as moreyon, refractory dissolved carbon, and particulate organic carbon
focused remedial measures are assessed. In such cases, BOD measurements are inadequate.

Second, the monitoring data may not be collected properly in
space and time. For example, a traditional monitoring program
Models and Data might situate sampling locations below point-source inflows. Al-
though such information is valuable, models evaluating nonpoint
Models are only as good as the information upon which they are sources must be distributed more evenly to resolve more gradual
based. For the purposes of the present discussion, this informatiorspatial variations in water quality. The same holds for temporal
can be divided into science and data. monitoring. For example, dissolved oxygen might be traditionally

Science represents numbers and mathematical constructs thatampled at a single time during daylight hours. For systems with
reflect scientific understanding. These consist of default param-strong diurnal variations, critical oxygen levels usually occur at
eters(e.g., Bowie et al. 1985; Schnoor et al. 1987; EPA 1990 dawn. If a model simulated diurnal changes, a more effective
model constructsthe science embedded in the model equagions sampling strategy might be @) install a continuous monitoring
and modeled parameters. The latter are values that are calculatedevice or(2) sample at dawn and late in the afterndsee Fig.
with formulations based on scientific studigésr example, evapo-  4).

2 samples

Fig. 4. An example of how model resolution influences sampling
strategies. If diurnal variations of state variables are being simulated,
adequate temporal sampling must be conducted to capture such vari-
f';lbility. This may cause data collectors to install continuous sampling
devices or to sample at several times of day to capture both the mean
and the range.

transpiration and reaeration formulas The use of monitoring data is also complicated by the fact that
Data are numerical values that are site-specific and obtainedmultiple agencies with differing mandates collect such dasdble

by direct measurements. These consist of spatial daglogy, 1). For example, drinking water utilities routinely measure quan-

topography, soil types, land use, areas, morphomeforcing tities such as UV-254, turbidity, and TOC in order to assess dis-

functions (meteorology, point loads state data(temperature, infection byproducts and bacterial contamination. In contrast,

flow, concentration, water transparehcynd rate datgdirect many do not sample the standard limnological data necessary to

measurement of model parameters such as settling velocity, SODmodel water qualit(species of carbon, nutrients, algae, Jettt.

etc). should be noted that water utilities are increasingly looking to

Although both science and data bear on model credibility, the watershed controls as a means to improve the quality of their raw
present discussion focuses on data. In particular, the forcing func-water. Thus, beyond their utility for TMDLs, water-quality-
tion and state data that figure prominently in model calibration oriented data would prove directly useful in such efforts.
and confirmation are emphasized. This data can be broken into The second class of data is that collected to support past mod-
three categories: monitoring data, old model data, and new modeleling studies. Such studies were often conducted to assess oxygen
data. and/or eutrophication during the 1960s and 1970s. These data sets

Monitoring refers to data that are measured on a routine basisare often imperfect, in the sense that they might not be compatible
for reasons other than modelirig.g., compliance or detectipn with present analytical and modeling standards. However, they
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Table 1. Different Measures of Organic Carbon Employed by Four
Groups ATERSHED LOAD MODEL
Type Measures of organic carbon E Physics §
Water quality compliance CBOD, TOC ' HYDRAULICS i
Sewage treatment effluent COD, CBOD | i
Drinking water UV254, TOC i HEAT/T RACERS | :
Modern WQ model labile DOC, refractory POC, | """""""""""
detrital POC, algal POC | WATER QUALITY|
Note: CBOD=carbonaceous biochemical oxygen demand; F@sgal
organic carbon; COBchemical oxygen demand; UV254bsorption of RECEIVING WATER MODEL
ultraviolet light at 254 nm; DOE&dissolved organic carbon; POC e Sy
=particulate organic carbon. i ySICS i
— HYDRAULICS :
can still have great value for model assessment. In particular, they =|l HEATITRACERS| .
might prove extremely useful in model confirmation, as discussed e R R ’
in the next section. |
The final class is new data collected expressly for model sup- » WATER QUAL'TYI

port. Although these would seem to be the most reliable, prob-

lems can occur because modelers are sometimes not included in Fig. 5. Natural flow of model calibration process

the sampling design process. In such cases, the correct variables

and sampling frequencies required for the model may be omitted.

This sometimes occurs because agency monitoring groups ardnvariably this will result in a poor “fit” to the data. At this point,
employed to collect the data. Because they are set up to measuréhe model parameters are adjusted to optimize agreement between
traditional variables, they are sometimes unaware that the model-the model output and the state data. If the final fit is deemed
ers might require differing and additional data. It can also occur adequate, the model is considered calibrated. Assessing the ad-
because the modeler is hired after the data collection effort is equacy of a model fit involves graphical comparisons and statis-
already underway. tical tests. Because the subject has been discussed in great depth

It should be noted that the question of sampling design is a elsewhere(Reckhow and Chapra 1983a; Berthoux and Brown
“two-way street.” As mentioned above, monitoring groups should 2002; McCuen and Snyder 1986; efd.will not cover it here.
be sensitive to the needs of the modelers. On the other hand, When the submodels composing the framework are indepen-
modelers should not propose state variables that are difficult ordent, the calibration process can be conducted sequen(ragy
impossible to measure. For example, it makes no sense to modeb). This sequence is dictated by the natural information flow be-
six species of phosphorus if it is economically infeasible or op- tween the major submodels: watershe®@ceiving water. Simi-
erationally impossible for typical laboratories to measure them. It larly, within each submodel there is a hierarchy dictated by both
should be stressed that purely scientific models developed forinformation flow and the uncertainty of the estimates. First, the
exploratory purposes are not necessarily subject to this constrainthydraulic modekflows) would be calibrated. Next, heat and con-

It should also be stressed that along with adequate state dataservative tracers can be calibrated(19 provide an independent
accurate estimates of the model forcing functions are equally check on the hydraulics, anl@) demonstrate that the constituent
critical. If the loadings are highly inaccurate, model calibration transport is adequate. Finally, the least certain part of the
and confirmation become meaningless exercises. process—the water quality component would be simulated. Note

Some general conclusions regarding modeling and data collec-that in stratified systems, temperature and tracers can significantly
tion: affect the hydraulics, and hence the three must be calibrated si-
* Modelers should be an integral part of the sampling design multaneously. The important point is that once the physical pro-

process. cesses are calibrated, they should be not modified during the
« All modelers should use the same data. The most conflicted water quality calibration.

analyses occur when modelers use different data. Any data that Three techniques can greatly enhance the model calibration

bear on the TMDL decision process should be available to all process:

parties involved in the process. e Sensitivity analysis The model parameters can be perturbed,
» Data should be archived with accompanying quality assurance and the variations in the state variables observed. A number of
information (precision, method, etc. techniques are available for this, including first-order error

» Data collection should be coordinated among different collec-  analysis, Monte Carlo simulation, and generalized sensitivity
tors. Although each entity must collect data that support its  analysis(Spear and Hornberger 1980The objective is to
own mission, additional parameters might be included at mar-  identify which parameters have the greatest impact on key
ginal cost in order that the data sets are more broadly useful.  state variables. This information can improve manual calibra-

tion by guiding the modeler to focus on the most sensitive
parameters. It can also influence decisions regarding direct rate

Model Calibration and Confirmation measurements, as described next.

» Direct rate measurements As stated above, the conventional

Once adequate data sets are compiled, the model should be run approach to model calibration involves adjusting uncertain

and compared with state data. The initial runs can be made with model parameters such that a model output time series com-

default parameters and any site-specific measured process rates pares favorably with state-data time series. Another approach
that are availablée.g., reaeration rates, settling velocities, )etc. is to directly measure model parameters so that they are esti-
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mated with greater precision and accuracy. Common examples
include reaeration rates, settling velocities, primary production Hyper-
rates, community respiration rates, and sediment oxygen and
nutrient fluxes. If these rates can be “pinned down” via field
. , “o
or laboratory experiments, the model’s degrees of freedom can A
be reduced. The intent is to reduce the degrees of freedom Eutro- ‘\'\G
e . . 2"
sufficiently that fewer parameters are subject to adjustment. : \;\(\e

Finally it should be noted that autocalibration might have peso-
some utility in guiding and informing the calibration process. . T
This involves setting up bounds for automatically adjusting model Oligo-
parametergwithin constrained ranggso optimize some objec-
tive function that reflects goodness of (fit.g., least squargs~or
systems Wlth a large data gncertalnty, one difficulty with such Fig. 6. Relationship between trophic state and loadings for conven-
approaches is that the resuiting parameters often bump up agams’[tlonal pollutants. More pristine systems tend to be more sensitive to
the constraints, suggesting that the optimum lies outside the pa- ' .

. . load changes than highly degraded systems.
rameter space. Nevertheless, because of advances in computing
speed, the value of such automatic calibration approaches should
be explored.

Once the model is calibrated, its reliability must be estab-  |n practice, it is easier to obtain the proper data to confirm the
lished. This process has traditionally been mislabeled as Vel’ifica-physical modelLevel 1). Given a three- to five-year observation
tion or validation. As pointed out by Reckhow and Chapra period, it is likely that meteorological conditions would vary suf-
(1983D, validation (the ascertainment of truthis inconsistent  ficiently to assess whether the hydraulics, tracers and temperature
with the logic of scientific research. The only real validation of a are simulated adequately.
model is confirmation by independent observatigAsscombe Level 2 confirmation is more problematic. As with the physics,
1967). The testing of scientific models is considered an inductive the intent is to simulate data sets that differ significantly from the
process, which means that, even with true premises we can at bestalibration set. As noted, for systems dominated by nonpoint
assign high probability to the correctness of the model. Thus, thesources, it is possible that physically different years would exhibit
termsconfirmationor corroborationare preferredReckhow and different loadings. However, it is less likely that these meteoro-
Chapra 1983b; Oreskes et al. 1994 logically induced load variations would mimic the reductions

The purpose of confirmation is not to validate that the model is needed to bring the system to the desired quality.

“true” but rather to ensure that the model predictions are consid-  This is especially vexing when the water body is far from the
ered sufficiently credible for decision making. The fact that mod- desired target. This stems from the fact that the relationship be-
els can never be absolutely verified has significant policy impli- tween trophic state and loadings is nonlinear. If the trophic con-
cations. By admitting that models are approximations, it negatestinuum were linear, one would expect that a 50% reduction in
stall tactics based on the premise that remedial action be indefi-loadings would result in a 50% improvement in receiving water
nitely postponed because models can never be demonstrated to bguality. In fact, nonlinear mechanisms, e.g., algal limitatim-
absolutely true. perature, nutrients, and lightsediment-water interactions, and

From the standpoint of practical applications, the issue of species shifts are nonlinear. And, as depicted in Fig. 6, the larger
model confirmation then reduces to two considerations: assessthe load reduction, the more the curvature comes into play.
ment of “goodness” of fit and required tests. As noted previously, Today, nonlinear algal limitation is included in most models,
the former has been addressed in detail elsewhere. The latter willand rational sediment-water submod@sy., Di Toro et al. 1990;
be discussed here. Di Toro and Fitzpatrick 1993; Di Toro 200Q1lare increasingly

In essence, there is a hierarchy of tests that can be applied: being employed. The remaining issue is the inclusion of adequate
» Level O: Application to a case almost identical to the calibra- constructs to predict species shifts. Although some models do

tion case. This is merely additional calibration disguised as include multiple phytoplankton grougand a smaller number in-

confirmation. It is next to useless, unless the new case fails. clude attached plantsvery few systematic tests have been con-

One possible explanation for a failure would be that the origi- ducted to corroborate whether these formulations adequately

nal model was highly influenced by its initial conditions. This simulate species shifts across trophic states.

can commonly occur for long residence time systems such as In rare cases, data are available for both the polluted case and

large lakes. either the prepolluted or postcleanup states. Lake Washir(@ton
» Level 1: Application to a case with different meteorology than Seattle represents a classic exampEmondson 1994 The lake

the calibration case—for example, a wet year versus a dry yearwas enriched with increasing phosphorus loading from 1941 to

or a cold year versus a warm year. Such confirmation usually 1963. Over this period, the abundance of algae increased several-

yields adequate corroboration for the physical model. In addi- fold. Further, the species composition became dominated by cy-
tion, it may partly corroborate the water quality model. Such anobacterigin particular, Oscillatoria), which were inedible by
would be the case for systems dominated by meteorologically higher organisms. In the period 1963—-1968, sewage was diverted
driven nonpoint loads, which are typically highly influenced around the lake. As a result, phosphorus concentration and phy-
by runoff. toplankton abundance decreased. Useillatoria essentially dis-

* Level 2 Application to a case with significantly different load- appeared and were supplanted by edible diatoms and green algae.

ings. This provides a means to corroborate the model's adap-The zooplankton assemblage became dominate®dphnig a

tive mechanismse.g., species shifts, long-term shifts in sedi- filter-feeding zooplankton that is extremely efficient at clearing

ment oxygen, and nutrient fluxesas a result of loading  the water of edible phytoplankton. Hence, the water clarity im-

changes. proved to a greater degree than would be expected.

Loadings
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For calibrated model applications where the end points involve  In the long term, he suggests, models might be restructured so
long-term water clarity and dominant species, applying them to that a relatively complete error analysis is feasible. Although such
systems like Lake Washington could provide a kind of cross- approaches could prove extremely useful, the suggestion to re-
sectional confirmation. Such applications would involve Lake structure modeling bears some scrutiny lest it be misinterpreted or
Washington’s system-specific data, but with kinetic parameters misconstrued. At face value, restructuring might be taken to imply
taken from the calibration run. If the new run adequately predicts that simpler empirical/statistical approaches would supplant com-
the observed changes, such an exercise greatly strengthens thglex process-oriented/numerical models. Although the statistical

model’s credibility. _ o o approaches by nature greatly expedite a complete uncertainty
This type of cross-sectional confirmation of longitudinal mod-  analysis, something is lost in the bargain.

els can be generalized to the notion of benchmark data sets. Such gy their nature, empirical models are slaves to their training
sets could be developed for the range of water bo@ias, lakes,  gata sets. For cross-sectional moddlased on data from many

impoundments, streams, rivers, estugraesd water quality prob-  yater bodiey this means that training data sets must span the
lems (eutrophication, pathogens, toxics, sediments,) efor entire range of decision alternatives. For example, a model in-

which TMDLs are actively being pursued. , _ tended to evaluate nutrient load should be trained on data span-
This idea can be further systematized by developing a confir- iy the full range of trophic states. Otherwise, predictions
mation portfolio for all modeling software used for TMDLs. Such amount to highly uncertain extrapolations

?I p())r(tjfollo COtUI(:_ Coiﬂp;'?ﬁ cas(ej sltudlélx(ﬂong W'tht t|he|r 'lTFf’Ut th Although effective cross-sectional models can be developed in
ies) demonstrating that the model works adequately wellfor the oo, mannefparticularly when developed regionallypros-

systems and water quality problems for which it was designed. If pects seem less sanguine for longitudinal models, that is, those

peer reviewed, the portfolio could also serve as a source of bench- . . .
. - based on time-series data from a single water body. Unless de-
marks against which new models could be tested. Further, a docu-

mented track record of the model's general success would in_talled historical data sets spanning polluted and unpolluted con-

crease confidence in its application to cases where confirmationd't'olr:jS are ayallalk)le, |ttwouI? ts_eem that the resulting predictions
data were sparse. would again involve extrapolation.

As described next, water quality models should include esti- Such r_nodgls would also seem _Iimited _for highly distribuFed
mates of model uncertainty. Thus, the confirmation might also systems “l,(? rivers and estuaries \_N'th multiple inputs. In par'Flcu.-
include special cases/watersheds/waterbodies where error analysi&" the ability of such models to disaggregate the effects of indi-
was conducted for each of the large process models. This wouldVidual point and nonpoint sources would seem to be problematic.
at least provide some official, reported estimate of error. While The latter might be particularly difficult, because their depen-
this would not be quite the same as a site-specific error analysis,dNce on precipitation might make them covary significantly.
it would provide the model user with some sense for the uncer- These deficiencies suggest that whereas empirical approaches
tainty. might yield more precise predictiotias reflected by lower uncer-

Finally, after the model has been calibrated and confirmed, the tainty), they might be less accuratas reflected by their ability to
model can then be recalibrated to the entire data set to obtain arPredict central tendengyConversely, the complex process mod-

optimal fit (Reckhow and Chapra 1983#y using all the avail- els might yield more accurate but more uncertain predict?qns.
able data, this pooling of information further strengthens the mod- ~ Regardless, it is clear that both approaches have utility and
el's reliability in the actual TMDL prescription. will be important over the short terifthree-year horizon There

will certainly be problem contexts where empirical approaches

will be superior to process models, and vice versa. In fact, wher-
Models and Uncertainty ever they both have been developed, empirical approaches should

be used in tandem with process-based models in a complementary

Several investigators have made persuasive arguments for inclugrather than in competitive fashion. This occurred 25 years ago
ing uncertainty as an essential and explicit part of the water qual-WNen empirical (Vollenweider etal. 1980 simple lumped
ity modeling process, and the TMDL process in particdag., mechanisti¢Chapra 198)) and hlghly developed process models
Reckhow 1977, 2003; Reckhow and Chapra 1983a; NRC 2001;(Thomann and Segna 1980; Di Toro 19&ere used to develop
Beck 1987. Most engineers and scientists agree with this argu- & consensus regarding Great Lakes phosphorus cdBiesiman
ment because we all know thél) our models are imperfect and ]
that (2) these imperfections are best expressed probabilistically. ~ For the long term, research on model uncertainty should be
At minimum, this means that estimates of uncertainty aCCOmpanymcreased with particular emphasis on rationalizing the margin of
all model predictions and that the margin of safé4OS) should safety, facilitating uncertainty analysis through simpler models,
be formulated probabilisticalljReckhow 20038 and investigating how Bayesian approaches might be construc-
That said, performing a complete error analysis of a process-tively employed. In addition, research should be directed toward
oriented water quality model is not trivial. The fact that very few practical and feasible approaches to incorporate uncertainty into
have been conducte@nost notably by Di Toro and van Straten process-oriented, mechanistic models. Finally, intermediate hy-
1979 and van Straten 1988upports this contention. Hence, be- brid approaches could prove a useful means to capture the
cause of the heavy data demands of a proper error angiysis strengths of both types. These would consist of simpler process
considering both parameter and model error, as well as covari-models that would account for key mechanisms, but which would
ance and the severe time constraints for TMDL development, it be sufficiently simple to accommodate a more thorough yet
is simply unrealistic to require that such complete analyses befeasible uncertainty analysis.g., Chapra 1977; Chapra and Rob-
implemented as part of every TMDL process. Hence, Reckhow ertson 1977; Walker 1985, 1986; Chapra and Canale 1991; Haith
(2003 has suggested that, in the short term, more practical butet al. 1992; Borsuk et al. 2001Such models might be particu-
incomplete uncertainty analyses could be conducted and incorpo-arly useful in the sort of adaptive implementation scheme sug-
rated into the decision process. gested in this volume by Reckhof2003.
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(a) Traditional (b) Modern
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Fig. 7. Information flow between components in decision-making prodessiistorical and(b) present. Note that the “decision makers” (in)
refer to both regulatory agencies and stakeholders.

As stated previously, the use of models for TMDLs is not a By contrast, decision support interfaces should be designed for
“one size fits all” type of endeavor. Although the inclusion of the needs of decision makers. In particular, they should enhance
uncertainty is a laudable goal, it would be tragic if the issue exploration of the decision space. For example, they would allow
undermines the great value of process models for TMDL prescrip- users to readily modify such forcing functions as loads and
tion. This is particularly vexing in light of history. Despite the fact weather. In contrast, users would not be permitted to change
that little or no uncertainty analyses were conducted, process-model parameters established during the calibration/confirmation
oriented models have been used effectively over the past 75 yearphases. In the same vein, scenario generation tools would be in-
to determine load allocations for a broad range of pollutants in a cluded so that users could conveniently assess varieties of man-
wide range of receiving waters. Although admittedly imperfect, agement options.
they have been deemed as sufficiently sound engineering tools for As a final observation, although there has been extensive re-
rationalizing water quality management. It would seem ironic if search on the use of optimization algorithms for decision support
healthy discussions of uncertainty were misconstrued as a negain a variety of water quality management contexts, including
tion of this historical fact. wasteload allocation of point sources of polluti@fhomann

1972; Loucks et al. 1981 there has been very little attention
given to the problem of integrating optimization algorithms into
Decision Support the TMDL problem. In other words, the very essence of the
TMDL decision problem has yet to be cast as a decision problem.
When computers were not ubiquitous and water quality problems Including an optimization component in DSS to allow cost-
dealt primarily with point-source discharges, the modeler was effective management scenarios to be identified could do this.
usually at the center of the decision procHsig. 7(a)]. Thus, the
modeler acted as the interface between the model analysis and #10deling Infrastructure
single decision-making agency. ) .

In the late 1980s, environmental and water resource engineers! '0Mann’s(1998 “Golden Age” may not be realized if sound
began developing decision support systems, or 6, Loucks infrastructure is ngt in place to support thg modeling process. To
etal. 1985; Fedra and Loucks 1985: Loucks and Fedra 1987;date, most modeling support has been directed toward software
Reitsma et al. 1996; Chapra and Canale 198ue primarily to developmep(e.g., BASINS. Equally important are goﬁware sup-
computer advances, a DSS can now be developed to allow decjPort, modeling institutions, and human expertise infrastructure.
sion makers and stakeholders to interact more intimately and ef-
ficiently with the modeling environmeiiFig. 7(b)]. Today, com-
puter improvements allow much of the modeling process to be Historically, many of our major water quality frameworks have
integrated electronicallye.g., Chen et al. 1999By designing a been developed as spin-offs from high-profile modeling projects
graphical user interface expressly designed for decision making,(e.g., Ambrose et al. 1988; Cerco and Cole 1993thers were
the modeler is no longer at the center of the process. Rather, thedeveloped by consulting firms, academia, and government and
decision makergincluding stakeholdejscan be empowered to  subsequently moved into the public domain. Over the years, these
explore the decision space in a more transparent and direct fashmodels have been archived, maintained, and updated by various
ion. government entities, such as the U.S. Environmental Protection

Before proceeding, it should be stressed that the simple factAgency’s Center for Exposure Assessment Model(i@gAM), in
that a model has an interface does not mean that it is a decisionAthens, Georgia, and the Army Corps’ Waterways Experiment
support framework. In fact, model interfaces are often written for Station (WES) in Vicksburg, Mississippi. Unfortunately, these
modelers rather than to support the decision process. Modelingcenters have not always been adequately funded to support their
interfaces are usually motivated by the need to perform simula- missions. Increased use and software complexity of water quality
tions in order to calibrate and confirm the model. Thus, they models have exacerbated this problem. As a consequence, model
might include tools to expedite the preparation of input files, dis- updates and upgrades are presently not implemented quickly
play graphs and statistical comparisons of model output and ver-enough to meet user needs and to keep pace with scientific ad-
sus data, and perform sensitivity analyses. vances.

Software Support
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A specific example is the QUAL2E model, which has not been thermore, many professionally oriented training courses empha-
modified since 1987 Brown and Barnwell 1987 Hence this size the use of tools rather than the art and science of modeling.
valuable framework, which is part of BASINS, is unsuitable for Because models are becoming easier to use, there are currently a
modeling shallow streams dominated by attached plants. Simi-large group of “modelers” who are essentially button-pushers.
larly, although a viable framework for modeling sediment-water In the short term, several suggestions might help reverse this
fluxes was published nearly 10 years agbi Toro and trend:

Fitzpatrick 1993, this mechanism is just now being integrated « Modeling workshops should place increased emphasis on
into the publicly available models. modeler education, rather than model operation. Sufficient

No software company in the world would stay in business  time should be devoted to theory so that modelers understand
operating in such an ad hoc fashion. Government agencies should  the inner workings of the software implementations. Such ap-
establish some centralized mechanism responsible for mainte- plication issues as data analysis, calibration/confirmation, and
nance, upgrading, and quality assurance of their software prod- interpretation of model sensitivity and uncertainty analysis
ucts. These groups should consist of modelers as well as software could be stressed.
engineers. » Guidelines for the assessment of models and specific model
applications should be developed. These should be sufficiently
flexible to allow different modeling approaches but structured
enough to establish standards for assessing quality.

As stated above, government agencies have decommissioned, de- The long-term prospects depend upon the government and uni-
emphasized, or dispersed much of their water quality centers ofVersities recognizing that environmental modeling goes well be-
excellence. The most notable of these has been the Center foyond software development. From the government’s perspective,
Exposure Assessment Modelif@EAM), in Athens, Ga. The one idea would be to direct more graduate traineeships and fel-
government should reestablish and strengthen such centers. Thiowships toward environmental modeling. Increased funding in
would have a number of benefits, including quality control, stan- support of modeling science would begin to encourage universi-
dardization, and maintenanc¢mcluding updates In addition, a ties to generate the modeling graduate students required to sustain
modeling center could have a research and development compothe discipline.
nent that would allow scientific advances to be more rapidly in-
tegrated into modeling practice.

State agencies should assemble their own modeling teamsConclusion
These teams should guide or implement models developed for

their particular state's TMDLs. In addition, they should play the ap old joke (Chapra and Reckhow 1988oes like this: A scien-
critical role of archiving models and data and maintaining and tist, an engineer, and a lawyer were asked the question. “What is
upgrading them for future applications. two plus two?” The scientist immediately answered: “Two plus
Finally, the_ old idea of basin commissions might be revived. {0 equals four.” The engineer shook her head and retorted: “Ap-
These arose in the 1960s to acknowledge that watersheds Wergroximately two plus approximately two equals approximately
the most rational vehicles to organize water quality management.tq,r.” Both then turned to the lawyer and demanded, “What is

In addition, they were extremely useful in managing interstate oy answer? What is two plus two?” The lawyer stared back and
waters. Such entities are arising today in an ad hoc fashion. Forcalmly replied: “Well, what would you like it to be?”

example, the Cha_rles River Wat_ershed Association, in Massachu_- The joke may be old, but the sentiment remains the same. As
setts, has a technical s.tewardsh|p fun.ctlon on that watershed. Thig, 55 always been the case, enginéarsl their engineering TMDL
group conducts sampling and modeling for the watershed. Most yqelg find themselves as the moderators between truth-seeking
importantly, they serve as a vehicle to maintain the system's 10ng- gcjentists and answer-seeking policymakers and stakeholders.
term institutional data and modeling memory. Over the next 10 to 15 years, modelers could make a major con-
tribution toward helping disparate groups reach consensus regard-
ing the quality of their watersheds.

As | hope this paper has made clear, water quality modeling
Water quality modeling is not a “point-and-shoot” endeavor. No should not be allowed to become a commaodity industry where the
matter how advanced the software, modelers must marshal skill,“low bid” rules the day. Rather, it is an academics-based disci-
knowledge, experience, and good judgment in order to be effec-pline with a long history of intellectual development and scholar-
tive. As Di Toro and Thumaii2001) put it: ship, one that requires long-term nurturing and investment to be

... water-quality models are not simple, straightforward en- sustainable. M_odeling itself_is an expertise that is gcquired

gineering calculations. The methodology has not pro-  through education and experience—and merely generating num-

gressed to the handbook stage, and perhaps the following P€rs does not a modeler make. Only by recognizing these facts
analogy is useful: Models are less like a radio—plug it in, will the Golden Age be realized.

turn it on, and it produces beautiful music—and more like a

violin. Only a talented and well-trained violinist can pro-

duce beautiful music. Acknowledgments
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