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where C6f11206  is glucose, which can be taken as a sir~iple representation of organic 
matter. When sewage is discharged into a receiving water, a reaction of this type 
takes place. The organic matter i n  the sewage is oxidized by bacter-ia to i%nn car- 
bon dioxide and water. Although photosynthesis (that is, plant growth) represeots a 
reverse reaction that produces organic matter and oxygen, i t  does not usually occur 
i n  the same vicinity as the decomposition. In addition because decornposition and 
photosynthesis are relatively slow, they would not come to equilibrium on the tirne 

- scales of interest in most water-quality problems. Therefore the decomposition is 
usually characterized as a one-way process. 

2.1.2 Reaction Kinetics 

The kinetics or rate of such reactions can be expressed quantitatively by the h w  
of mass action, which states that the rate is proportional to ttfe concentration of the 
reactants. This rate can be represented generally as 

This relationship is called a rate law.  I t  specifies that the rate of reaction is 
dependent on the product of a temperature-dependent constant k and a function of 
the concentratiorls of the reactants f (c,~, ca, . . .). 

The functional relationship f (cA, C B ,  . . .) is almost always determined experi- 
mentally. A common general fomm is 

The powers to which the concentrations are raised are referred to as the reaction 
order. In Eq. 2.5 the reaction is a order with respect to reactant A and /3 order with 
respect to reactant B. The overali order of the reaction is 

The overall order of the reaction, or the order with respect to any individual 
component, does not have to be an integer. However, several of the most important 
reactions used in water-quality modeling exhibit integer orders. 

In this lecture we focus on a single reactant. For this case Eq. 2.5 is often sim- 
plified as 

where - = the concentration of the single reactant and ,I = the order. 

2.1.3 Zero-, Flrst-, and Second-Order Reactions 

!llthough tbe.8- are ali i n f  nite nuinher of  ways  to chxractrn7e reactions, Eq 2 7 ~vi th  

FlGURE 2.2 FIGURE 2.3 
Plot ol conceritral~on versos lime for a zero- Plot of concentral~on versus time for a 
order reaction f~rst-order reaction. 

Zero-order. For the zero-order model ( 1 1  = 0), the equation lo integrate is 

where k h a  ,)nits of & I  L - ~  T-I .  If c = CQ at r = 0 ,  [hen this equation can be 
integrated by sej~aratinn of variables to yield 

As denoted by this equation arld tile gr;ipi~ in Fig. 2.2, tllis mnclel specifies a constant 
rate of depletion per unit liine. Thus, if a plot of concentration VCI-bus time yields a 
straight line, we can infer t l~at  the reaction is zero-order. 

First-order. For the first-order model the equation lo integrate is 

where k has units of T-I (see Box 2.1). If c = co at I = 0, then this equation can be 
integrated by separation of variables to yield 

Inc  - Into = -kr (2.1 I ) 

Taking the exporleritial of both sides gives 

c = ~ , - , e - ~ '  

As tlenotetl by this equation, this mudel specilies an expo~iential depletion; that is. 
.- the concentration halves per unit tirne. Thus, as i n  Fig. 2.3, the concentration curve 
-. asymptotically approaches zero with time. 
. - 

BOX 2.1. The "Meaning" of a Flrst-Order Rate Constant 

! )'()I; in,t;,, I ! : I \ C  i l (  1 1 ,  II,,,~ 1 1 1 ~ .   its ,,; 111: : c x : ~ i n r ~  r ; ~ t ~  <lcpei>(l o i ~  tlic order 13f  the re- 
, ,' 
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states that a zero-order decay reaction has a rate of 0 2 mg L-'  d-I, it sin~ply means 
that the substance is disappearing at a rate of 0.2 mg L-I every day. 

In contrast a first-order rate of 0. I yr-' is not as straightfonvard. What does it 
"mean?" A way to gain insight is provided by the Maclaunn series approximation of 
the exponential function: 

.. 
$5- 
:x - 
:%. '2:. - .  .. , 
:iy. , ,.. 
-.;I.: 
.'.LC 

J 

i I = u R E  s2.1 
Plot of the exponential function 
along with the f i  rst-order Maclaurin- 
series approximation. 

If the series is truncated after the first-order term, it  is 
e - X  I - x  

As depicted in Fig. B2.1, we see that the first-order approximation describes the 
rate of decrease well for small values of x .  Below x = 0.5 the discrepancy is less than 
20%. At higher values the approximation and the true value diverge. 

This leads us to the following interpretation of the "meaning" of the first-order rate 
constant. If its magnitude is less than 0.5. i t  can loosely be interpreted as the fraction 
of the pollutant that is lost per unit time. Thus a rate of 0.1 yr-I means that 0.1 or 10% 
is lost in a year. If the magnitude of the rate is higher than 0.5, a change of the units 
can be used to interpret it. For example a rate of 6 d - '  clearly cannot be interpreted as 
meaning that 600% goes away per day. However, by converting it to an hourly rate, 

I I we can state that 25% goes away per hour. I 
I I 

C. 

The  decay rate used in Eq. 2.12 is called a "base-e" rate, because it is used in 
conjunction with the exponential function to define the depletion of concentration 
with time. It should be noted that any base can be  employed to describe the same 
trend. For example it should be recognized that the base-e o r  Napetian logarithm is  
related to the base-10 or common logarithm by 
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This relationship can  be substituted into Eq. 2.1 1 to give . . . , . .-iL.,' 

log c - log co = - k'r ' (2.14)' ' I :  

? 
where k' = a "base- 10" rate that is related to the base-e rate by . f 

k k' = - 
2.3025 

Taking the inverse logarithm of Eq. 2.14 yields8 , 

This equation yields identical predictions to Eq. 2.12. 
Although most first-order rates are written in terms of base-e, some are expressed , -  

in base-lo. Therefore it is important to understand which base is being used. Mis- 
interpretation would lead to using a rate that was incorrect by a factor of 2.3025 
(Eq. 2.15). , 

Second-order. For the second-order model the equation to evaluate is 

where k has units of L~ M - I  T- ' .  If c = co at r = 0, then this equation c a n  be  ' 
integrated by separation of variables to yield 

Therefore if the reaction is second-order, a plot of llc versus I should yield a straight 
line. Equation 2.18 can also be expressed in terms of concentration as  a function of 
time by inverting it to give 

s 
1 

c = COP (2.19) 
1 + kco[ 

Thus, a s  was  the case for the first-order reaction, the concentration approaches zero 
in a curved, asymptotic fashion. 

Finally it should be obvious that a pattern is emerging that can be employed to 
model higher order rates. Tha t  is, for positive integer values of n, where n # 1, 

or solving for c ,  

2.2 ANALYSIS OF RATE DATA 

There are a vsrietv of wsvs to analyze batch-reactor data of the type 'shown in 



30 PART I Completely Mixed Systems 

use Eq. 2.7 as the basis for illustrating these techniques, many of the general ideas 
apply to other rate models. 

2.2.1 The Integral Method 

The integral method consists of guessing rt and integrating Eq. 2.7 to obtain a func- 
tion, c(r). Graphicql methods are then employed to determine whether the model fits 
the data adequat6 .  

The graphic3 approaches are based on linearized versions of the underlying 
rnodels. For the zero-order reaction, merely plotting c versus I should yield a straight 
line (Eq. 2.9). For the first-order reaction, Eq. 2.11 suggests a semi-log plot. These 
and the other commonly applied models are summarized in Table 2.1. 

I 

TABLE 2.1 
Summary of the plotting strategy used for  applying the  integral method to 
irreversible, unimolecular reactions 

' Rate Dependent Independent 
Order units ' (v) (XI Intercept Slope 

Zero ( n  = 0) , ' M(L3 T)" c I co - k 
First ( n  = I) T- '  In c I In co - k  
Second ( n  = 2) L3(M T)'I I lc  I I lco k 
General ( n  # I )  (L' M-I)"-' T- '  = I  -" I c A - "  (11 - l)k 

EXAMPLE 2.1. INTEGRAL METHOD. Employ the integral method to determine 
whether the following data is zero-, first-. or second-order: 

If any of these models seem to hold, evaluate k and co. 

Solution; Figure 2.4 shows plots to evaluate the order of the reaction. Each includes the 
data along with a best-fit line developed with linear regression. Clearly the plot of In c 
versus I most closely approximates a straight line. The best-fit line for this case is 

l n c  = 2.47 - 0.09721 ( r 2  = 0.995) 

Therefore the estimates of the two model parameters are 

k = 0.0972 d - '  

co = e247  = 11.8 mg L- '  

Thus the resulting model is 

The model could also be expressed to the base I0  by using Eq. 2.15 to calculate 
0 0972 

k= 
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FIGURE 2.4 

I Plots to evaluate whether the reaction is (a)  zero; 
(c) order, (b) first-order, or (c) second-order. 

which can be substituted into Eq. 2.16, 

c = 1 1 . 8 ( 1 0 ) - ~ ~ ~ ~ '  

The equivalence of the two expressions can be illuslrated by computing c at the 
same value of time, Ll 

L3 
c = 11.8e-0m72'5) = 7.26 z :- . 

b 
c = 1 1 . 8 ( 1 0 ) - ~ ~ ~ ~ ' ~ '  = 7 26 

Thus they yield the same result 

2.2.2 The Differential Method 

The differential method applies a logarithmic transform to Eq. 2.7 to give 

log -- = l o g k + n l o g c  ( 2 )  
Therefore if the general model (Eq. 2.7) holds, a plot of the log(-dcldt) versus log c 
should yield a straight line with a slope of 11 and an intercept of log k. 

The differential approach has the advantage that it automatically provides an 
estimate of the order. It has the disadvantage that it hinges on obtaining a nurner-, 
ical estimate of the derivative. This can be done i n  scveral ways. One of the most 
common is based on numerical differentiation. I k. 

i d .  

Numerical differentiation. Numerical differentiation uses finite-difference' 
approximations to es t imate  derivatives (Chapra anti C a n ; ~ l e  1988).  For example a 
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FIGURE 2.5 
4-1 ti + Numerical differentiation. 

centered difference can be employed (Fig. 2.5): 

Although this is certainly a valid approximation, numerical differentiation is an 
inherently unstable operation-that is. it amplifies errors. As depicted in Fig. 2.6, be- 
cause the finite differences (Eq. 2.23) are subtractive, random positive and negative 
errors in the data are additive. As described in the following example, a technique 
known as equal-area differenriation can be used to moderate this problem (Fogler 
1986). 

FIGURE 2.6 
Illustration of how even small 
data errors are amplified 
by numerical differentiation. $I,/ (a) Data with no error; 
(b) the resulting numerical 
differentiation; (c) data modified 
slightly; (d) the resulting 
differentiation manifesting 

0 

. . 1 , O  I -I\ increased . . - .  variability a - (reprinted ,~ Am,.n, 
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EXAMPLE 2.2. DIFFERENTIAL METHOD. Use the differential method to eval- 
uate the order and the constant for the data from Example 2.1. Use equal-area differen- 
tiation to smooth the derivative estimates. 

Solution: The data from Example 2.1 can be differentiated numerically to yield the 
estimates in Table 2.2. The derivative estimates can be graphed as a bar chart (Fig. 2.7). 
Then a smooth curve can be drawn that best approximates the area under the histogram. 
In other words try to balance out the hiaogram areas above and below the drawn curve. 
Then the derivative estimates at the ta points can be read directly from the curve. 
These are listed in the last column of 8 le 2.2. Figure 2.8 shows a plot of the log of the 
negative derivative versus the log of concentration. The best-fit line for this case is 

TABLE 2.2 
Data analysis to determine 
derivative estimates from time 
series of concentration 

Ac dc -- -- 
Al dl 

I C 

(d) (mg L - ' )  (mg L-I d- ' )  

0 12.0 1.25 
I . 3  

I 10.7 1 . 1  
0.85 

3 9.0 0.9 
0.95 

5 7.1 0.72 
0.50 

10 4.6 0.45 
0.42 

15 2.5 0.27 
0.14 

20 1.8 0.15 

0 5 10 15 20 
FIGURE 2.7 , 

f Equal-area differentiation. 
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Therefore the estimates of the model parameters are 

n = 1.062 

FIGURE 2.8 
Plot of log(- dcldl) versus log c. 

k = 10-1049 = 0.089d-I 8 

Thus the differential approach suggests that a first-order model is a valid approximation. , 

2.2.3 The Method of Initial Rates 

There are cases where reactions occur in which complications arise over time. For 
example a significant reverse reaction might occur. Further some reactions are very 
slow and the time required for the complete experiment might be prohibitive. For 

s i such cases the method of initial rates uses data from the beginning stages of the 
experiment to determine the rate constant and order. 

In this method a series of experiments is carried out at different initial concen- 
trations co. For each experiment, the initial rate -dcoldt is determined by differ- 
entiating the data and extrapolating to zero time. For the case where the rate law 
follows Eq. 2.7, the differential method [that is, a plot of log(-dco/dt) versus log co] 
can be used to estimate k and n. How this is accomplished can be illustrated by taking 
the logarithm of the negative of Eq. 2.7: 

log - - = log k + n log co ( 2;) 
Thus the slope provides an estimate of the order, whereas the intercept provides an 
estimate of the logarithm of the rate. 

!2 
0 

2.2.4 The Method of Half-Live8 

The hal/-[iJe of a reaction is the time it takes for the concentration to drop to one-half 
. . . of 11s initial value. In other words 

- - c(tso) = 0 . 5 ~ 0  (2.25) 

where tso = half-life. Again we use Eq. 2.7 as our rate law model. If c = co at 
1 = 0. Eq. 2.7 can be integrated to give 

If Eq. 2.25 is combined with 2.26, the result is 

Taking the logarithm of this equation provides a linear relationship, . . i s <  _ .  . ~ .  
;_ - 

. . ,;.; . ,;: ; . :LC 
2"-I - 1 I. 

log 150 = log + (1 - n)log co (228) .:" ' . '  

k(11 - 1) 
l i  

4 Thus a plot of the log of the half-life versus the log of the initial concentration will 
b yield a straight line with a slope of 1 - n (providing, of course, that Eq. 2.7 holds). g 
I; The estimate of n can then be used in conjunction with the intercept to evaluate k. 
3 
$ 

It should be noted that the choice of a half-life is arbitrary. In fact we  could ' 
:i 

have picked any other response time r+,  where 4 is the percent reduction. For this ' .  

general case, Eq. 2.27 becomes Q - 0  . . 

2.2.5 The Method of Excess 

When a reaction involves many reactants, i t  is often possible to add excess quan- 
tities of all but one of the reactants. In such cases the reaction will depend solely 
on the single scarce reactant. For example several decomposition reactions for toxic 
substances (such as biodegradation and hydrolysis) can sometimes be represented 
by the reaction 

A + B -t products (2.30) 

where A = the toxic compound and B = another quantity (such as bacteria or hy- 
drogen ion) that participates in the reaction. The following simple rate expression is 
often employed to model the reaction: ,. 

where c, and c b  = concentrations of the two reactants. If the initial concentration 
of B ( c ~ )  is much greater than A (coo), the ensuing reaction can have a measurable 
effect on A whereas B will be affected mmirnally. Consequently the reactioAcan be 
reformulated as 
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where k b 2  = kcbO = a pseudo-first-order reaction rate. The other techniques de- 
':.: scribed in the previous sections can then be employed to evaluate the coefficients. 
A. 

, :. 

'i.- *-4. 2.2.6 ~ u r n e r i d l  and Other Methods 
>< z 
' Aside from the f67egoing approaches, there are computer-oriented methods for eval- 
.I uating rate data. The  integraNleast-squares method offers the benefits of both the 

integral and differential approaches in a single method. In this approach, values 
are assumed for the parameters ( n  and k) and Eq. 2.7 is solved for c(r ) .  However, 
rather than by calculus, the solution is obtained numerically. The  solution consists 

: of a table of predicted concentrations corresponding to the measured values. T h e  

sum of the squares of the residuals between the measured and predicted concen- 
, . &ations can be calculated. T h e  assumed values of n and k are then adjusted until a 

minimum or least-squares condition is reached. This can be done by trial-and-error. 
_ However, modern software tools such as spreadsheets include nonlinear optimization 

algorithms that provide an automated way to accomplish the same goal. 
' 

The final parameter values represent the n and k that correspond to a best-fit of 
. the data. Thus the technique has the advantage of the integral technique in the sense 

that it is not overly sensitive to data errors. Further it has the benefit of the differential 
approach in lhat no a priori assurr~ption of reaction order is required. 

EXAMPLE 2.3. INTEGRAL LEAST-SQUARES METIIOD. Use the intcgrai 
least-square method to analyze the data from Example 2. I .  Use a spreadsheet to perform 
the calculation. 

Solution: The solution to this problem is shown in Fig. 2.9. The Excel spreadsheet was 
used to perform the computation. Similar calculations can be irnplernented with other 
popular packages such as Quattro Pro and Lotus 123. 

Initial guesses for the reaction rate and order are entered into cells 8 3  and 34. re- 
spectively, and the time step for the numerical calculation is typed into cell B5. For this 
case a column of calculation times is entered info colurnn A starting a[ 0 (cell A7) and 
ending at 20 (cell A27). The k l  through k4 coefficients of the fourth-order R K  method 
(see Lec. 7 for a description of this niethod) are then calculated in the block B7..E27. 
These are [hen used to determine the predicted concentrations (the c, values) in colurnn 
F. The measured values (c , )ze entered in column G adjacent to the,m$responding pre- 
dicted values. These x e  themused in conjunction with the predictecGlalues to compute 
the squared residual in c o l u s  H .  Tliese values are stin~ined in cell B9, 

At this point each of the spreadsheets detennines the best fit in a slightly different 
way. At the time of this book's publication, the following menu selections would be rnade 
on Excel (v. 5.0). Quattro Pro (v. 4.5) and 123 for Windows (v .  4.0): 

Excel or 123: t(ool) s(olver) QP: t(ool) ~(ptinlizer) 

Once you have accessed the solver or optimizer, you are prcnlpted For a target or so- 
lution cell (t129), queried whether you want to maximize or mini~nize the target cell 
(millimjze), ;~ntl for the cells that are to be varied (B3..B4). You then activate 
the algo"ihn3 [s(c,lve) or g(o)], and the results are as in Fig. 2.9. As shown, the values in 
cells B3 . .H4  rn i l~ l !n i~e  the sum of the squares of the residuals (SSR = 0.155) between tlle 

. .  I .  , ., - . r C  .; ..., . , I m q , . .  , l ; f ~ ; . ~  frnrr j  F y : r n , ~ ~ l t ~ c  

FIGURE 2.9 
The application of the integral least-squares method to determine the order and 
rate coefficient of reaction data. This application was performed with the Excel 
spreadsheet. 

0 10 
FIGURE 2.10 
Plot of fit generated with the integralileast- 

C squares approach. 

; yy , 
rt1er.e are a variery of  o!t~er ap j~roac l~cs  for analy~ir lg rate data tleyorld Ale orles 

,I ,,,., :I - , > ,  I : , >  ,i,:, I , . . , . , .  . I, ? 1.; , ,, 
I ,  . . . : I I 7 - 7  
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p r e 5 e n t ~ t i ~ n ~  of Fngier (1986) and Grady and Lim (1 980) for additional information, 
1 t a , ~ ~  be reviewing some additional rate laws in later sections of this t e x t  biethods 
fur evaluating their rate constants will be reviewed in a "just-in-time" fashion as  
[hey are needed. 

In !lie previous lecture I introduced the notion of mass concentration as a rileans to 
quantify the strength of a singie chemical co~npound in water. Now that we are deal- 
ing with reactions, several compounds may react to form other compounds. There- 
fore we might want to detenninc "how much" of a reactant or product is consumed 
or as the reaction proceeds. The  answer to this question resides in the stoi- 
chiometry, or number of moles, taking part in a reaction. 

For exainple the decomposition or oxidation of sugar is rtpresented by (recall 
Eq. 2 .3 )  

C h H I 2 o 6  + 6 0 2  -+ 6C02 + 6 H r 0  (2.33) 

This equation specifies that 6 moles of oxygen will react with 1 mole of glucose to 
form 6 inoles of carbon dioxide and 6 moles of water. In later lectures we directly use 
molar concentrations when we mathematically manipulate such equations to solve 
chemical equilii~rium problems. For the time being, as outlined in the previous lec- 
ture. we must be able to interpret Eq. 2.33 from a mass-concentration perspective. 

First, let's understand how the glucose in Eq. 2.33 would be expressed in mass 
units. This is usiially clone in two ways. The most direct way is to express the conccn- 
[ration on the basis of the whole molecule. For example we might say that a beaker 
contained 100 g m--' as glucose. This is often abbreviated as 100 g-glucose m-). 
The number of inoles of glucose in this solution can be determined with the gram 
rnolecuiar weight of  glucose. Tile gram molecular weight can be calci~lated as 

Number hlass of 
of moles one mole 

Gram molecul;rr weight = I80 g 

-1 . 
I ills result can be used to compute the n~ola r  concentration, 
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Thus 1 0  g-glucose m-3  corresponds to 4 0  g m 3  of organic carbon, or 40  g C  m-3. 
Such conversions are often expressed as stoichiometric ratios. For example the 

mass of carbon per mass of glucose can be expressed as 

6 nloles C X I2 gC1mole C 
flcg = 180 g-glucose = 0.4 g C  g-glucose-' (2.36) 

where ucg = slo&iomeLric ratio of carbon to glucose r l i i s  ratio can be used to 
formulate Ek. 2 .3~a l te rna t ive ly  as 

c, = OcgCb: = 0.4 00 g-glucose 
= 40  g C  rn-j g-glucose ( 2 . 3 7 )  

where the subscripts c and y designate carbon and glucose, respectively. 
Aside from calculating how much individual element is contained in a molecule, 

stoichiometric conversions are often used to determine how much of a reactant or  
product is consumed or  produced by a reaction. For example how much oxygen 
would be c o n s u ~ r ~ e d  if 4 0  g C  m-3 of glucose reacted according to Eq. 2.33? First, we 
can calculate the rnass of  oxygen consurned per mass of glucose carbon decomposed, 

6 moles O 2  X 32 gOIrnole O2 
~ O C  = 6 moles C x 12 gCIrnole C = 2.67 g o  g c - '  (2.38) 

where r,, = Inass of oxygen consumed per carbon decomposed. This ratio can be 
used to determine 

Thus if 4 0  g C  m - 3  of glucose (or I 0 0  g-glucose m-') is decomposed, 106.67 g o  
m - 3  will be consumed. 

EXAhlPL2E 2.4. STBICHIOMETRIC RATIOS. Aside from the decomposition of 
organic carbon compounds such as glucose, other reactions consume oxygen in natural 
waters. One such process, called nitrijication, involves the conversion of ammonium 
(NH4') to nitrate ( N o 3 - ) .  Although we will learn in Lec. 23 that it's a little rnore corn- 
plicated, the nitrification rcaction can be represented by 

Suppose you are tolcf Illat a hcaker contains I 2  g-anirnoni~~rrl rn-' is nirrified according 
to the first-order rcaction 

t i l l"  
,A,,, a l t e r i l n t i v e  is to express the concentration in terms of the mass of one of  llle - - - 

(i I - k , , , ~ ,  
componen t s  o f  glucose. Because i t  is an organic carbon compound. glucose c(~lllt1 be 
cyi,ressed as s i n 3  of  carbon. For example where = aillnlorliun~ concenLration and k ,  = first-order r . ~ t e  corlstnnt for nitrlf jcation.  f ( 1 1 )  Collvefl [fle~onccl,lintion  tog^ nl-'. (6) Detrrnline ho~v n l k l c l l  Oxygen is  ,-pnslirned if ~,!\,,,.:isc (6 r ~ i o l ~ s  C ',% 12 ~ ( ' / I J I O ~ C  " 

\ -~ (10 I ~ C ~  171 ' ( ?  7 5 1  ifis n i l r i f i c  ; ( ( i n n  r ~ - : l i i ~ ~ r i  17~)t.,, i , ,  c o ! ~ ~ ; > l t . ~ ~ r ~ r i  ( , )  ( '  t i , , ! ~ l  I I ~  111r r n f y  r,r151,11,,,,lon 
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Solution: (a) 

gNH4 + I X  14gN 
12- ( = 9.33 g~ ~ n - )  

m3 1 x 1 4 + 4 x 1 g N t I 4 +  

( b )  ron = 32 - 4.57 go g ~ - l  - - 
1 14 

Therefore 4.57 gO are taken up for every gN that is nitrified. For our example. 

9.33 - 4.57 - = 42.67 gO m-' 
gN rn 3 ( :R) 

(c) At the onset of the experiment, the ammonium concentration will be at 9.33 gN 
rn-'. Using (Ire oxygen-to-nitrogen ratio, the initial rate of oxygen consunlption car1 be 
calculated as 

- - EN 
- -r,,,,knno = -4.57@ [Ol d-l)(9.33?) = -426°C) i i i 3  dl 

dc gN 

2.4 TEMPERATURE EFFECTS 

The rates of most reactions in natural waters increase with temperature. A ge~lernl 
rule of thumb is that the rate will approximately double for a temperature rise of 
10°C. 

A more rigorous quantification of the temperature dependence is provided by 
the Arrheniits equation. 

where A = a preexpanential or frequency factor 
E = nctivation energy (I mole- ' )  
R - ths gas constant (8.3 14 J mole-] K - ' )  

T o  = absolute iemperature (K)  

Equation 2.40 is often used to compare the reaction rate constant at two different 
temperatures. This can be done by expressing the ratio of the rates, as in 

Equation 2.4 1 can be simplified by realizing that: 

Because temperatures in most water bodies vary over a rather narrow range (273 
to 3 13 K) ,  [he product of POI and T,? is relatively corrstartt. 
The difference In temperature (Ta2 - T a I )  is identical whether an absolute or a 
centigrade scale is used. 

Consequently rhe following can be defined as a constant: 
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TABLE 2.3 
Some tjpical values of 0 used in \+ater- 
quality modeling 

- 
6 Q I O  Reaction 

1.024 1 . ?7  Oxygcn rraeralion 
1.047 1 58 BOD deco~nposi~ion 
1.066 1.89 Phytoplankton growth . . 
1.08 2.16 Sediment oxygen dernai~d (SOD) 

.,: 

where the temperature is expressed irl "C. 
In water-quality modeling, many reactions are reported at 20QC (see Prob. 2 1 6 ) .  

Therefore, Eq. 2.43 is usually expressed as 

. , 

Table 2.3 sun~nlarizes some conlmonly used values fur 8 Figure 2 11 illustrates; 
the functional dependency on tenipenhure across the range commonly encountered. 
in rlatural waters. 

1 

The tenlperature dependence of biologically mediated reactions is often ex- 
pressed as the quantity Q r o ,  which is defined as the ratio 

Substituting Eq. 2.44 yields 

Q,o = 0'O (2.46) 
Note that Cq. 2.46 can be used to conipute that a Ql0 of 2 (recail the l~euristic at the 

? beginning of  this sectron) is equivalent to a 0 of 2' = 1.072. Thus a 8 = 1.072 
corresponds to a doubling of  the rate for a ten~perature ribe fronl 10 to 20°C. 

0 10 20 30 

? I  T("C) 
FIGURE 2 .11  
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EURIPI,E 2.5.  EVALUATION OF TEhqPERATURE DEPENDENCY OF RE- 
,\CTIONS. A laboratory provides you with the following results for a reaction: 

( 0 )  Evaluate 0 for this reaction. 
( b )  Determine the rate at 20°C. , . 

Solution: (a)  To evaluate this information, we can take the logarithm of Eci. 2.43 and 
raise the result to a power of I0  to give 

log k ~ T 2 ) - l o g i ( T t )  

e ' [ O  T l - T l  

Substituting the data gives 
lug0  12-log0 20 * 

0 = 10 4-16 = 1.0435 

(h )  Equatinn 2.43 can then be used to compute 

k(20) = 0.20 x 1 . 0 4 3 5 ~ ~ - ' ~  = 0.237d-I 

Finally it should b e  noted that there are  some  reactions that d o  not follow the  
Arrhenius  equation.  For  example  certain b i o l ~ g i c a l l y  media ted  reactions shu t  d o w n  
at  very high and very low temperatures.  The formulations used in s u c h  si tuations are 
introduced in later lectures.  

Use this dn:a to estimate 0 and k at 20°C 

2.5. AII article I I I  a lirnnologicalt journal reports a Qlo for a phytoplankton growth rate of 
1.9. If the growth rate is rrporled as 1.6 d - '  at 20°C, what is the rate at 30°C? 

2.6. You set up a series of 300-mL bottles and add 10 mL of a glucose solution to each. 
Note that the glucose solution has a concentration of 100 mgC L - ' .  To each bottle you 
add a small q~raritity (that is, with an insignificant amount of carbon compared to the 
glilcose) of bacteria. Yo11 fill the remainder of their volurnes up with water. Finally you 
seal each t~oit le and incubate thern at 20°C. At various times you open one of the bottles 
and measure its oxygen content. The following data results: 

( ( I )  Develop a conceptual model for what is taking place inside the bottle. 
( b )  Using the information from this lecture, attempt to estimate the decay rate for the 

glucose. 

2.7. In the fall of  1972 Larsen et al. (1979) measured [lie following concentrations of.totol 
phosphorus irr Shagawa Lake, Minnesota: 

PROBLEMS 
2.1. you Ferform a series of batch experiments and come up with the following data: 

a p  
264 86 280 57 3 0 0  46 

!,(hr) 1 0  2 4 6 8 1 0  

r ( p g  L - ' )  1 10.5 5.1 3.1 2.8 2.2 1.9 I t  is known that the primary reason for the reduction in concentratiun during this period 
was the settling of particutare phosphorus. I f  the lake is assumed ro acr as a batch reactor 

Determine the order (,I) and the rate ( k )  of the underlying reaction. and settling is assumed to follow a first-order process, determine the removal rate of 
total phosphorus for'the lake. If the lake's mean depth I S  5.5 m, calculare the settling 

2.2. ~~~i~~ a to determine wherher a reaction is third-order. 
velocity for total phosphoms. 

23. T~ study the photodegradation of aqueous bromine, We dissolved a small quant i ty  of 2.8. Population dy~a rn ic s  is important in predicting how human development of a water- 
liqrlid bic:lnine i n  water, placed i t  in a clearjar, and exposed it to sunligllt.The foliowing shed rnight influence water quality. One of the simplest models incorporates the as- 
data were obtained: slirnption that the rate of change of the population p is proportional to the existing 

' j  . .. population at any time I :  ,' 

r (rnin) 1 1 0  20 30 40 50 60 

, 3 .52 2.48 1.75 1.23 0 .87 0.61 -- c (ppm) I d p  = Gp 
'.:. . rf r (P2.8) 

' .  . 
whether the reaction is zero-, first-, or second-order and estimate the reaction 

rate. --- 

r .. . .~ - . . . r . . , , , , ~  , , , , I ,  lh  + I  ~ h i . ~  hn\,,. 3 inore c o n ~ ~ l e t r  tfnla Set th;+n ' l . immlogy i ?  [he s t t l l ~ ~  of l,!kc? ' J k  tcr171!r~~1log~~ is d<~t i tc , l  fro", rfw ( ; ~ < - ~ k  \v i>r<J fCjr l;ike. / , , , I ~ ~ ~ I F  
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where G = the growth rate (yr- ' ) .  Suppose that census data provides the followirlg 
trend in population of a small town over a 20-yr period: 

If the model (Eq. P2.8) holds. estimate G and the population in 1995. 

2.9. The world took about 300 years to grow from about 0.5 billion to 4 billion people. 
Assuming first-order growth, determine the growth rate. Estimate the population over 
the next century if this rate continues. 

2.10. Many lakes in temperate regions are thermally stratified in the summer, consisting of an 
upper layer (epilimnion) and a lower layer (hypolimnion). In general the surface laser 
has dissolved oxygen concentration near saturation. If i t  is productive (that is, has high 
plant growth), settling plant rnatter can colleci in the hypolimnion. The decomposition 
of this matter can then lead to severe oxygen depletion in the bottoln waters. When 
turnover occurs in the fall (that is, vertical mixing due to decreasing temperature and 
increasing winds), the mixing of the two layers can result in the lake's having an oxygen 
concenlration well below saturation. The following data were collec~ed for Onondaga 
Lake in Syracuse, New York: 

If the saturation concentration is 9.2, use this data to evaluate a first-order reaeration rate 
for the system (units of d- ' ) .  Assume that the lake acts as an open batch reactor; that 
is, ignore inflows and outflows of oxygen except gas transfer across the lake's surface. 
Also, express the rate as a transfer velocity (units of m d - ' ) .  Note that Onondaga Lake 
has a surface area of 11.7 kln2 and a mean depth of 12 m. 

Date Sep. 30 Oct. 3 Oct. 6 OCI. 9 Oc1. 12 Oct. 15 Oct. 18 Oct. ? 1 

2.11. A reaction has a Qlo of 2.2. I f  the reaction rate at 25OC is 0.853 w k - ' ,  what is the 
reaction rate at 1 S°C? 

O x y g e n c o n c . , 4 . 6  
(mg L-') 

2.12. A commonly used anesthetic is absorbed by human body organs at a rate proportional to 
its concentration in the bloodstream. Assume that a patient requires 10 mg of the anes- 
thetic per kg of body weight to maintain an acceptable level of anesthesia for surgery. 
Compute how many mg must be administered to a 50-kg patient to maintain a proper 
level for a 2.5-hr operation. Assume that the anesthetic car1 be introduced into tlie pa- 
tient's bloodstream as a pulse input and that i t  decays at a rate of 0.2% per rnirlute. 

6.3 7.3 8.0 8.4 8.7 8.9 9.0 

2.13. Estimate the age of the fossil remains of a skeleton with 2.5% of its original carbon- 1.1 
content. Note that carbon-14 has a half-life of 5730 yr. 

2.14. I n  1828 Friedrich Wohler discovered that the illorgarlic salt arnn~orliuln cyanate 
(NH,OCN) can be converted into the organic compound urea (Nl lzCON112), as in 

The proor (llat tllis reaction occurred ni:uked the hegirlnirlg of iliodenr orgarlic and bio- 
' . . - . - , I  $ ~ ~ t , - ~ x ~ i m c .  , { . , t . ,  .," p ~ n e r i ~ r ~ c [ ~ t  inili:~l!y 
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, . . . I 'I 

Determine the order and rate of the reaction. 

2.15. You perfonn a batch experiment and develop the following data: 

You know from experience that the reaction should be following a third-order reaction. 
Use this information and the integral method to determine a value for the reaction rate. 

2.16. Suppose that the temperature dependence of a reaction rate is based on its v a l ~ e  at 25OC 
(note that this is the convention in areas such as chemical engineering). For example 

k (T )  = 0.1(1.06)T-2' 

Reexpress this relationship based on the rate's value at 20°C. 

2.17. The following data for concentrations and tirnes were developed for a series of batch 
experiments having different i r~~ t i a l  conditions: 

Assuming that Eq. 2.7 holds, use the method of initial rates to determine the order and 
rate of the reaction. 

2.18. Assuming that Eq. 2.7 holds, use the niethod of half-lives to determine the reaction or- 
der and rate by evaluating the following half-lives and initial concentrations developed 

! from a series of batch expenrnents: 
i 

! ; 2.19. Assuming that Eq. 2.7 holds, use the integral least-squares method to determine the 
reaction order and rate by evaluating the folluwing data collected from a batch experi- 

i ment: , 
! 

? - 2.20. The coriceiitratior~ of inorgarlic phosphorus in natural waters is usually expressed as 
j tV\U phosphorus (PI. fluwevcr, i t  is sonie t i~~ie ie ipre i red  as phosphate (PO,). When reading 

? <(-ier~rifi(-:~r?i,.l~ w w t  q,,,. t ! , . < r  :," n c t , , , a n ,  ,,,, ;,,,,rn7.>;,- . . I - , , ~  ..h,,-.., ,. >- , - - -+- .~- :  .... .-(. 




