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LECTURE 2

Reaction Kinetics

As described in Fig. 1.5, a number of things can happen to a pollutant cnce it enters
a water body. Some of these relate to transport. For example it can be translated and
dispersed by currents within the system. In addition the pollutant can exit the system
by volatilization, by sedimentation, or by transport along with outflowing water. All
these mechanisms affect the pollutant without altering its chemical composition. In
contrast the pollutant might be transformed into other compounds via chemical and
biochemical reactions. In this lecture we focus on such reactions.

Suppose that you want to perform an experiment to determine how a pollutant
reacts after it enters a natural water. A simple approach would be to introduce some of
the pollutant into a series of bottles filled with the water. A stirrer could be included
in each bottle to kecp the contents well mixed. Such vessels are commonly referred
to as batch reactors. By measuring concentration in each bottle over time, you would
develop data for time and concentration (Fig. 2.1).

The purpose of this lecture is to explore how such data can be employed to
characterize the reactions that affect the pollutant. That is, we will investigate how
to quantitatively summarize (model) the reaction.

2.1 REACTION FUNDAMENTALS

Before discussing how reactions can be quantified, we must first develop some gen-
eral definitions and nomenclature.
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. FIGURE 2.1
A simple experiment to collect rate for a
4 poliutant in a natural water.

2.1.1 Reaction Types

Heterogeneous reactions involve more than one phase, with the reaction usually
occurring at the surfaces between phases. In contrast a homogeneous reaction in-
volves a single phase (that is, liquid, gas, or solid). Because they are the most fun-
damental type of reaction employed in water-quality modeling, this lecture focuses
on homogeneous reactions that take place in the liquid phase.

A reversible reaction can proceed in either direction, depending on the relative
concentrations of the reactants and the products:

s aA + bB=cC + dD (2.1

where the lowercase letters represent stoichiometric coefficients and the uppercase
letters designate the reacting compounds. Such reactions tend to approach an equi-
librinm state where the forward and backward reactions are in balance. They are the
basis for the area known as equilibrium chemistry. We will return to these types of
reactions when we address the topic of pH later in the book.

Although reversible reactions are important in water-quality modeling, more
emphasis has been placed on irreversible reactions. These proceed in a single di-
rection and continue until the reactants are exhausted. For these cases, we are dealing
with the determination of the rate of disappearance of one or more of the substances
that is taking part in the reaction. For example for the irreversible reaction

aA + bB - ¢C +dD 22

we might be interested in determining the rate at which substance A disappears.
A common example of an irreversible reaction is the decomposition of organic
matter, which can be represented generally by '
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where CgH,; 05 is glucose, which can be taken as asimple representation of organic
matter. When sewage is discharged into a receiving water, a reaction of this type
takes place. The organic matter in the sewage is oxidized by bacteria to {%rm car-
bon dioxide and water. Although photosynthesis (that is, plant growth) represents a
reverse reaction that produces organic matter and oxygen, it does not usually occur
in the same vicinity as the decomposition. In addition because decomposition and
photosynthesis are relatively slow, they would net come to equilibrium on the time

scales of interest in most water-quality problems. Therefore the decomposition is
usually characterized as a one-way process.

2.1 2 Reaction Kinetics

The kinetics or rate of such reactions can be expressed quantitatively by the law
d mass action, which states that the rate is proportional to tlte concentration of the
reactants. This rate can be represented generally as

dc
d_fA = ~l(f((,‘A,Cg,...) (244)

This relationship is called a rate law. It specifies that the rate of reaction is

dependent on the product of a temperature-dependent constant k and a function of
the concentrations of the reactantsf (¢4, cg, .. .).

The functional relationship f (c4, ¢, ...} is a@imost always determined experi-
mentally. A common general form is

d
—iﬁ = —kcSch 2.5)

The powers to which the concentrations are raised are referred to as thereaction

order. In Eq. 2.5the reaction is a order with respect to reactant A and 8 order with
respect to reactant B. The overail order of thereactionis

n=a+p (2.6)

The overall order of the reaction, or the order with respect to any individual
component, does not have to be an integer. However, several of the most important
reactions used in water-quality modeling exhibit integer orders.

In this lecture we focus on a single reactant. For this case Eq. 2.5is often sim-
plified as

dc
—~ = =k 2.7
Ir C (2.7)

where - = the concentration of the single reactant and n = the order.

2.1.3 Ze o, First-, and Second-Order Reactions

Although therr are an infinite number of ways to characterize reactions, Fq 2 7 with
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Piot of concentration Versos lime for a zero- Plot of concentration versus time for a
order reaction

first-order reaction.

Zero-order. For the zero-order model {# = 0), the equation 1o integrate is
e _ (2.8)
dt )

where & has unjts of M L=3 TV If ¢ = ¢¢ at ¢ = 0, then this equation can be
integrated by separation of variables to yicld

C = Cy — kt (2.9

As denoted by thisequation and the graph in Fig. 2.2, tlus model specifies a constant
rate of depletion per unit t1ime. Thus, if a plot of concentration versus time yields a
straight line, we can infer that the reaction is zero-order.

First-order. For the first-order model the equation to integrate is

dc
o= =
dt ¢

where k has units of T™' (see Box 2.1). If ¢ = ¢y @ | = 0, then this equation can be
integrated by separation of variables to yield

Inc —In¢gg = —kr 2.11)
Taking the exponential of both sides gives

c = coe” ¥ (2.1

As denoted by this equation, this model specifies an expenential depletion; that is.
the concentration halves per unit tirne. Thus, as in Fig. 2.3, the concentration curve
asymptotically approaches zero with time.

BOX 2.1. The"Meaning" of a FIrst-Order Rate Constant

(34 J

You may bave netnedtha the units of the reaction rate depend on the arder of the re-
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states that a zero-order decay reaction has arate of 02 mg L=!' d~7, it simply means
that the substance is disappearing at arate of 0.2 mg L™* every day.

In contrast a first-order rate of 0.1 yr=' is not as straightforward. What does it
"mean?" A way to gain insight is provided by the Maclaunn series approximation of
the exponential function:

2 3

ef=1-x+ r_x +
B TR
If the seriesis truncated after the first-order term, it is
e'x = I - X

As depicted in Fig. B2.1, we see that the first-order approximation describes the
rate of decrease well for small values of x. Below x = 0.5the discrepancy isless than
20%. At higher values the approximation and the true value diverge.

Approximation
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FIGURE B2.1

Plot d the exponential function
along with thefi rst-order Maclaurin-
series approximation.
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Thisleads usto the following interpretationof the' meaning™ of thefirst-order rate
constant. If its magnitude is less than 0.5. it can loosely be interpreted as the fraction
of the pollutant that islost per unit time. Thus arate of 0.1 yr~! means that 0.1 or 10%
islost in ayear. If the magnitude of the rate is higher than 0.5, a change of the units
can be used to interpret it. For example arate of 6d~! clearly cannot be interpreted as
meaning that 600% goes away per day. However, by converting it to an hourly rate,

1d

- -1
k=6d (24hr

) =0.25hr™!

| we can state that 25% goes away per hour.

The decay rate used in Eq. 2.12 is called a "base-e" rate, because it is used in
conjunction with the exponential function to define the depletion of concentration
with time. It should be noted that any base can be employed to describe the same
trend. For exampleit should be recognized that the base-e or Naperian logarithm is
related to the base-10 or common logarithm by
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This relationship can be substituted into Eg. 2.11 to give

logc — logeg = —K'r o (2.14)

where k' = a " base-10" rate that is related to the base-e rate by
k ’ .
k, = ——— .
2.3025 (&13)
Taking theinverse logarithm of Eq. 2.14 yields
¢ = cpl07¥ ' (2.16)

This equation yields identical predictions to Eq. 2.12.
Although most first-order rates are written in terms of base-e, someareexpressed

in base-lo. Therefore it is important to understand which base is being used. Mis- ’

interpretation would lead to using a rate that was incorrect by a factor of 2.3025

(Eq.2.15). .

Second-order. For the second-order model the equation to evaluate is

d
d—f = —ke? .17

where k has unitsof L3 M™! T™'. If ¢ = ¢g a ¢ = 0, then this equation can be
integrated by separation of variables to yield

1 1

- = — + kt 2.18)

c co

Thereforeif the reaction issecond-order, a plot of Ilc versust should yield astraight
line. Equation 2.18 can also be expressed in terms of concentration as a function of
time by inverting it togive

»

1
€= crF keot (219)

Thus, aswas the case for the first-order reaction, the concentration approaches zero
inacurved, asymptotic fashion.

Finally it should be obvious that a pattern isemerging that can be employed to
model higher order rates. That is, for positive integer values of n, wheren # 1,

1

cn-t

0

or solving for c,
1
c = ¢y — (2.21)
(1 + (n - Dkey~ 1]

2.2 ANALYSIS OF RATE DATA

There are a vsrietv of ways to analyze batch-reactor data of the type 'shown in

1
= — +(n— Dk (2.20) -
Cll
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use Eq. 2.7 as the basis for illustrating these techniques, many of the general ideas
apply to other rate models.

2.2.1 The Integral Method

The integral method consists of guessing n and integrating Eq. 2.7 to obtain a func-
tion, ¢(#). Graphical methods are then employed to determine whether the model fits
the data adequatefy.

The graphic% approaches are based on linearized versions of the underlying
rnodels. For the zero-order reaction, merely plotting c versus ¢ should yield astraight
line (Eq. 2.9). For the first-order reaction, Eq. 2.11 suggests a semi-log plot. These
and the other commonly applied models are summarized in Table 2.1.

TABLE 2.1 '

Summary of the plotting strategy used for applying the integral method to
irreversible, unimolecular reactions

Rate Dependent Independent
Order units » (x) Intercept Slope
Zero{n = 0) , ML T)! c I o -k
Firg (n = 1) T! Inc I Incy ~k
Second (n = 2) L3(M 1) I7e [ I/co k
Generd (n # 1) (L M-ty iT ! ohen I o (n -k

EXAMPLE 2.1. INTEGRAL METHOD. Employ the integral method to determine
whether the following data is zero-, first-, or second-order:

1(d) ! 0 | 3 5 10 IS 20
c(mgL™t) I 12 10.7 9 7.1 4.6 2.5 1.8

If any of these models seem to hold, evaluate k and cq.

Solution; Figure 2.4 shows plots to evaluate the order of the reaction. Each includes the
data along with a best-fit line developed with linear regression. Clearly the plot of Inc
versus | most closely approximates a straight line. The best-fit line for thiscase is

Inc = 2.47-0.09721  (r? = 0.995)
Therefore the estimates of the two model parametersare
k = 0.0972d"!
co =€ = [1.8mgL™!
Thus the resulting model is
c = 11.8¢7 00972

The‘model could also be expressed to the base 10 by using Eq. 2.15 to calculate
00972

\Ye
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! Plots to evaluate whether the reaction is (a) zero;
(c) order, (b)first-order, or (c)second-order.

which can besubstituted into Eq. 2.16,
¢ = 11.8(10)700

The equivalence of the two expressions can be illustrated by computing c at the
same value of time,

11.88—00972(5) - 726
11.8(10)"0%225 — 7 26

tt

c

TMDL

C

Thus they yield the same result

2.2.2 The Differential Method
The differential method applies a logarithmic transform to Eq. 2.7 to give

log (— ‘(%) = logk + nlogc (2.22)
Therefore if the general model (Eq. 2.7) holds, a plot of the log(— dcldt)versuslogc
should yield a straight line with a slope of n and an intercept of log k.

The differential approach has the advantage that it automatically provides an
estimate of the order. It has the disadvantage that it hinges on obtaining a nurner-,
ical estimate of the derivative. This can be done in scveral ways. One of the most
common is based on numerical differentiation. |

Numerical differentiation. Numerical differentiation uses finite-difference’
approximations to estimate derivatives (Chapra and Canale 1988). For example a
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Finlte-difference
approximation

Cint |orrenss ’ True derivative:

, FIGURE25
fiy 2 fiat Numerical differentiation.

centered difference can be employed (Fig. 2.5):

dei  Ac _ civy — Cin (2.23)
dt At tivy — ti-y

Although thisiscertainly a valid approximation, numerical differentiation isan
inherently unstabl e operation — thatis. it amplifieserrors. Asdepicted in Fig. 2.6, be-
cause the finite differences (EQ. 2.23) are subtractive, random positive and negative
errors in the data are additive. As described in the following example, a technique
known as equal-area differenriation can be used to moderate this problem (Fogler
©1986).
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Hustration & how even small
data errors are amplified

by numerical difterentiation.
(a) Data with no error;

(b) the resulting numerical
differentiation; (c)data modified
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differentiation manifesting
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EXAMPLE 2.2. DIFFERENTIAL METHOD. Use the differential method to eval-

uate the order and the constant for the data from Example 2.1. Use equal-area differen-
tiation to smooth the derivative estimates.

Solution: The data from Example 2.1 can be differentiated numerically to yield the
estimates in Table 2.2. The derivative estimates can be graphed as a bar chart (Fig. 2.7).
Then a smooth curve can be drawn that best approximates the area under the histogram.
In other words try to balance out the histogram areas above and below the drawn curve.
Then the derivative estimates at the 8ata points can be read directly from the curve.
These are listed in the last column of Fable 2.2. Figure 2.8 shows a plot of thelog of the
negative derivative versus the log of concentration. The best-fit line for thiscaseis

log (—‘;—f) = - 1.049 + 1.062logc  (r? = 0.992)
TABLE 2.2

Data analysis to determine
derivative estimates from time
series of concentration

A w
At dl

o

1 c S
(d) (mgL™) (mgL'd")

0 12.0 1.25
1.3
[ 10.7 1.1
0.85
3 9.0 0.9
0.95
5 7.1 0.72
0.50
Yo 4.6 0.45
0.42
15 2.5 0.27
0.14
20 18 0.15

\

0 5 10 15

FIGURE 2.7 - !
t Equal-area differentiation.
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FIGURE 28
Plot o log(~ de/dt) versus log c.

Therefore the estimates of the model parametersare
n = 1.062
k= 107404 = 0.089d"! '
Thus thedifferential approach suggests that afirst-order model isa valid apprgximation.

2.2.3 The Method d Initlal Rates

There are cases where reactions occur in which complications arise over time. For
example a significant reverse reaction might occur. Further some reactions are very
slow and the time required for the complete experiment might be prohibitive. For
such cases the method of initial rates uses data from the beginning stages of the
experiment to determine the rate constant and order.

In this method a series of experiments is carried out at different initial concen-
trations ¢g. For each experiment, the initial rate —dcg/dt is determined by differ-
entiating the data and extrapolating to zero time. For the case where the rate law
follows Eq. 2.7, thedifferential method [that is,a plot of log(—d co/dt) versuslog co)
can beused to estimate k and n. How thisisaccomplished can beillustrated by taking
the logarithm of the negative of Eq. 2.7:

Iog(— %) = logk * nlogco (2.24)

Thus the slope provides an estimate of the order, whereas the intercept provides an
estimate of the logarithm of the rate.

o
2.2.4 The Method d Half-Live8

The half-fife of areaction isthetime it takes for the concentration to drop to one-hal f
of its initial value. In other words

c(tso) = 0.5¢q (225)

where rs, = half-life. Again we use Eq. 2.7 as our rate law model. If ¢ = ¢g at
¢ = 0. Eq. 2.7 can be integrated to give

Ty
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(2.26) "7/

= .——1__. @ ! _— 1
ke W n - D\ ¢
If Eq. 2.25is combined with 2.26, theresult is
o= 2 =11 2amy
0T DT @2 .

Taking the logarithm of this equation provides a linear relationship,

27— |
logtso = log —

+(1 -
K= D) (1 - n)logeo

Thus a plot of the log of the half-life versus the log of the initial concentration will

yield a straight line with a slope of 1 — » (providing, of course, that Eq. 2.7 holds).

The estimate of n can then be used in conjunction with the intercept to evaluate k.
It should be noted that the choice of a half-life is arbitrary. In fact we could

(2.28) “*

have picked any other response time r4, Where ¢ is the percent reduction. For this -

general case, Eq. 2.27 becomes

_ [100/¢100 - M -1 1
k(n — 1) g

[ (2.29)

2.2.5 The Method d Excess

When a reaction involves many reactants, it is often possible to add excess quan-
tities of all but one of the reactants. In such cases the reaction will depend solely
on thesingle scarce reactant. For example several decomposition reactions for toxic
substances (such as biodegradation and hydrolysis) can sometimes be represented
by the reaction

At B — products (2.30)

where A = the toxic compound and B = another quantity (such as bacteria or hy-
drogen ion) that participates in the reaction. The following simple rate expression is
often employed to model the reaction:

dcg
dt

where ¢, and ¢, = concentrations of the two reactants. If the initial concentration
of B (cro) is much greater than A (c,g), the ensuing reaction can have a measurable
effect on A whereas B will be affected minimally. Consequently the reaction can be
reformulated as

= —kcacy (2.31)

dca
dt

= —(kcpo)ca = —kp2Ca
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where ky2 = kcpo = a pseudo-first-order reaction rate. The other techniques de-
scribed in the previous sections can then be employed to evaluate the coefficients.

2.26 Numerlqal and Other Methods

Aside from the féegomg approaches, there are computer-oriented methods for eval -

uating rate data. The infegralfleast-squares method offers the benefits of both the
integral and differential approaches in a single method. In this approach, values
are assumed for the parameters (# and k) and Eq. 2.7 is solved for ¢(t). However,
rather than by calculus, the solution is obtained numerically. The solution consists
of a table of predicted concentrations corresponding to the measured values. The
sum of the squares of the residuals between the measured and predicted concen-
trations can be calculated. The assumed values of n and k are then adjusted until a

minimum or least-squares condition iS reached. This can be done by trial-and-error.
However, modern software tool s such as spreadsheets include nonlinear optimization
algorithms that provide an automated way to accomplish the same goal.

The final parameter values represent the n and k that correspond to a best-fit of
the data. Thus the technique has the advantage of the integral technique in the sense
that itis not overly sensitive to data errors. Further it has the benefit of thedifferential
approach in that no a priori assumption of reaction order is required.

EXAMPLE 2.3. INTEGRAL LEAST-SQUARES METHOD. Use the integrai
least-square method to analyze the data from Example 2.1. Use aspreadsheet to perform
the calculation.

Solution: The solution to this problem is shown in Fig. 2.9. The Excel spreadsheet was
used to perform the computation. Similar calculations can be implemented with other
popular packages such as Quattro Pro and Lotus 123.

Initial guesses for the reaction rate and order are entered into cells B3 and B4, re-
spectively, and the time step for the numerical calculation is typed into cell B5. For this
case a column of calculation times is entered infocolurnn A starting at O (cell A7) and
ending a 20 (cell A27). The k, through &, coefficients of the fourth-order RK method
(see Lec. 7 for a description of this method) are then calculated in the block B7..E27.
These are then used to determine the predicted concentrations (the ¢, values) in colurnn
F. The measured values (c,) are entered in column G adjacent to the cerresponding pre-
dicted values. These are themused in conjunction with the predxcted@alucs to compute
the squared residual in colusn H. These values are summed in cell

At this point each of the spreadsheets detennines the best fit in aslighlly different
way. At thetime of thisbook's publication, the following menu selections would be made
on Excel (v.5.0).Quattro Pro (v. 4.5) and 123 for Windows (v. 4.0):

Excel or 123: t(ool) s(olver) QP: (ool o(ptimizer)

Once You have accessed the solver or optimizer, you are prompted Fo a target or so-
lution cell (+29), queried whether you want to maximize or minimize the target cell
(minimjze), and prompted for the cells that are to be varied (B3..B4). You then activate
the algorithm {s{olve) or g(0)}, and the results are asin Fig. 2.9. As shown, the valuesin
cellsg3. B4 minimize the Sumd lhc Squaresof the resnduals(SSR 0.155) between the
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The application of the integral |east-squares method to determine the order and
rate coefficient of reaction data. This application was performed with the Excel
spreadsheet.

10

(]
MDL

B

° " T FIGURE 210
Plot d fit generated with the integralieast-
t squares approach.
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presemations of Fogler (1986) and Grady and Lim (1980) for additional information.
1 will be reviewing some additional rate laws in later sections of this text Methods
for evaluating their rate constants will be reviewed in a “just-in-time" fashion as
they are needed.

2.3 STOICHIOMETRY

In the previous lecture | introduced the notion of mass concentration as a means to
quantify the strength of asingie chemical compound in water. Now that we are deal -
ing with reactions, several compounds may react to form other compounds. There-
fore we might want to determine "how much” of areactant or product is consumed
or created as the reaction proceeds. The answer to this question resides in the stai-
chiometry, or number of moles, taking part in areaction.

For example the decomposition or oxidation of sugar is répresented by (recall
Eg. 2.3)

CeH 1206 + 605 — 6CO; + 6HL0 (2.33)

This equation specifies that 6 moles of oxygen will react with 1 mole of glucose to
form 6 moles °! carbon dioxide and 6 molesof water. In later lectures wedirectly use
molar concentrations when we mathematically manipulate such equations to solve
chemical equilit:rium problems. For the time being, as outlined in the previous lec-
ture. we must be able to interpret Eg. 2.33 from a mass-concentration perspective.
First, let's understand how the glucose in Eq. 2.33 would be expressed in mass
units. Thisisusually clonein two ways. The most direct way isto express the concen-
tration on the basis of the whole molecule. For example we might say that a beaker
contained 100 g m™* as glucose. This is often abbreviated as 100 g-glucose m™3.
The number of moles of glucose in this solution can be determined with the gram
molecular weight of glucose. The gram molecular weight can be calculated as

Number Mass of

of moles one mole
6xC = 6 x g - T2¢g
12%H = 2 x g = 12g
6% 0 = 6 X 168 = 9g

Gram molecular weight = 180¢g

This result can be used to compute the molar concentration,

-glucose
008 (
m

1 mole
180 g-glucose

) = 0.556 mole m™* (2.34)

An alternative is o express the concentration in terms of the mass of one of the
components of glucose. Because it isan organic carbon compound. glucose could be
expressed as ¢ m~* of carbon. For example

goplucose (6 motes C v 12 gClmale (“\ )

3

A0 v(Cm (235
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Thus 100 g-glucose m~3 corresponds to 40 g m 2 of organic carbon, or 40 gCm™3.
Such conversions are often expressed as stoichiometric ratios. For example the
mass of carbon per mass of glucose can be expressed as

6 moles C X 12 gC/mole C
g = 4}899-9%56567 = 0.4gC g-glucose™!

where a., = sto}éwiometric ratio of carbon to glucose This ratio can be used to
formulate Eq. 2.3&alternatively as

‘4JCA (10
g-glucose |

(2.36)

Co = acgey = 0 g-glucose (2.37)

) = 40gCm™’
where the subscripts ¢ and g designate carbon and glucose, respectively.

Asidefromcalculating how much individual element iscontained in amolecule,
stoichiometric conversions are often used to determine how much of a reactant or
product is consumed or produced by a reaction. For example how much oxygen
would beconsumied if 40 gC m~7 of glucose reacted according to Eq. 2.337 First, we
can calculate the mass of oxygen consumed per mass of glucose carbon decomposed,

6 moles O, X 32 gO/mole O,
6 molesC x 12 gC/mole C

Foc = = 2.67g0 gCEl (2.38)
where r,. = mass of oxygen consumed per carbon decomposed. This ratio can be
used to determine

0
26787 <4ogc (2.39)

A -3
oC o ) 106.67 gO in
Thus if 40 gC m™> of glucose (or 100 g-glucose m~?) is decomposed, 106.67 gO
m ™ will be consumed.

EXAMPLE 2.4. STBICHIOMETRIC RATIOS. Aside from the decomposition of
organic carbon compounds such as glucose, other reactions consume oxygen in natural
waters. One such process, called nitrification, involves the conversion of ammonium
(NH4*) to nitrate (NQ; ™). Although we wiii learn in Lec. 23 thet it's a little more com-
plicated, the nitrification rcaction can be represented by

NH.* +20; — 2H* + H,0 + NO;~

Suppose you are told that a hcaker contains 12 g-ammoninm m~* iS nitrified according
to the first-order reaction

dn,

dr

- —kn”u

where n, = ammonium concentration and k, = first-order rate constant for nitrification.

(a) Convert the concentration to gNm™? (4) Determine how much oxygenisconsumed if

the nitrification reaction sroes to completion (¢) Chlenlte the rate of oxypen ansumption
3 ;
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Solution: (a)
12gNH4* ( 1 X 14gN - 9.33gNm’
m3 \lx14+4x1gNH*
{b) Ton = 1 x 14 Z 457 g0 gN'l
Therefore 4.57 gO are taken up for every gN that is nitrified. For our example.
8 (467 80\ _ 167 40 m->
9.33mJ (4.57 gN) = 4267 gOm

(c) At the onset of the experiment, the ammonium concentration will be a 9.33 gN
m~?. Using the oxygen-to-nitrogen ratio, theinitial rate of oxygen consumption can be
calculated as

= — = — _89 ~1 & = — -3 4-1
— = ko, = 4.57gN(0.m )(9,33m1 4.264 g0 m 3 d

24 TEMPERATURE EFFECTS

The rates of most reactions in natural waters increase with temperature. A general
rule of thumb is that the rate will approximately double for a temperature rise of
10°C.

A more rigorous quantification of the temperature dependence is provided by
the Arrhenius equation.

—E
K(Tq) = AeFT (2.40)
where A = apreexpanential or frequency factor

E = activation energy (J mole-")

R = the gas constant (8.314 J mole ™} K1)

T, = absolute temperature (K)

i

Equation 2.40 is often used to compare the reaction rate constant at two different
temperatures. This can be done by expressing the ratio of the rates, asin

E(Ta-Ta)
kKTad) _ “riaTs (2.41)
k(Tal)

Equation 2.41 can be simplified by realizing that:

e Because temperatures in most water bodies vary over a rather narrow range (273
to 313 K), the product of T, and Ty is relatively constant.

e The difference in temperature (Taz — Tay) is identical whether an absolute or a
centigrade scale is used.

Consequently the following can be defined as a constant:

_E
g = eRTunTa

(2.42)
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TABLE 2.3

Some typical values o @ used in water-

quality modeling
————— -

———
0 Qo Reaction

1.024 1.27 Oxygen reaeration

1.047 | 58 BOD decomposition

1.066 1.89  Phytoplankton growth

1.08 2.16  Sediment oxygen demand (SOD)
k(T7) - g1, :
k(_Tl) (2.43)

where the temperature is expressed in °C.
In water-quality modeling, many reactions are reported at 20°C (see Prob. 216).
Therefore, EQ. 2.43 is usually expressed as

KT = k(QO)f)rmm (244)'
Table 2.3 summarizes some commonly used valuesfur 8. Figure 2 11 illustrates;
the functional dependency on temperature across the range commonly encountered.
in natural waters. ,
The temperature dependence of biologically mediated reactions is often ex-
pressed as the quantity 20, which isdefined as the ratio

_ kQ20)
Q)O = F(]O) (2'45)
Substituting Eq. 2.44 yields
Qo = 0"

(2.46;
Note that Cq. 2.46 can be used tv compute that a Oy of 2 (recall the heuristjc at the
beginning of this sectfon) is equivalent toa @ of 2%, = 1.072. Thusa g = 1.072
corresponds to adoubling of the rate for atemperature rise from 10 to 20°C,

k(T)/k(20)

FIGURE 2.11
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EXAMPLE 2.5, EVALUATION OF TEMPERATURE DEPENDENCY OF RE-
ACTIONS. A laboratory provides you with the following results for areaction:

T, = 4°C ko =0.12d""
T, = 16°C Kk = 020d""

1t

(a) Evaluate 7 for this reaction.
(b) Determine the rate at 20°C.

Solution: (a) To evaluate this information, we can take the logarithm of Eq. 2.43 and
raise the result to a power of 10 to give
log le;)—lﬂgk(T‘)
g = 10 n-n

Substituting the data gives

tog 0 12-10g0 20

0 = 10 4-16 = 1.0435

(h) Equatien 2.43can then be used to compute
k(20) = 0.20x 1.0435%°7" = 0.237d""

Finally it should be noted that there are somme reactions that do not follow the
Arrhenius equation. For exampl e certain biologically mediated reactions shut down
at very high and very low temperatures. The formulations used in such situations are
introduced in later lectures.

PROBLEMS

2.1. You perform a series of batch experiments and come up with the following data:

1 {hr) { ¢ 2 4 6 8 10
clugl™") ] 105 51 31 28 22 19

Determine the order (n) and the rate (k) of the underlying reaction.

2.2. Derive a graphical approach to determine whether a reaction is third-order.

2.3. To study the photodegradation of agueous bromine, we dissolved a small quantity of
liquid bremine in water, placed itinaclearjar, and exposed it to sunlight. The following

data were obtained:

t (min) |

10 20 30 40 50 60
¢ {ppm) I 3.52 2.48 175 1.23 0.87 06l

whether the reaction iSZero-, first-, or second-order and estimate the reaction

rate.
Ve s~tfaeme oo th +i~ W ihave 3 more complete data Se than
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7 (°C) ! 4 8 12 16 20 24 28
k(d™h ‘ 0.120 0.135 0.170 0.200 0.250 0.310 0.360

Use this data to estimate ¢ and k at 20°C

2.5. An article in alimnological' journal reports a Qo for a phytoplankton growth rate of
1.9, If the growth rate isreported as 1.6 d ™' a 20°C, what isthe rate at 30°C?

2.6. You set up a series of 300-mL bottles and add 10 mL of a glucose solution to each.
Note that the glucose solution has a concentration of 100 mgC L.='. To each bottle you
add a small guantity (that is, with an insignificant amount of carbon compared to the
glucose} of bacteria. You fill the remainder of their volumes up with water. Finally you
scal each bottle and incubatethem at 20°C. At varioustimes you open one of the bottles
and measure its oxygen content. The following data results:

t{d) | 0 2 N] 10 20 30 40 50 60 70
¢ (mgO, L") l 10 8.4 6.5 4.4 2.3 1.6 1.3 1.2 1. 1.1

(ay Develop aconceptual model for what is taking place inside the bottle.
(k) Using the information from this lecture, attempt to estimate the decay rate for the
glucose.

2.7. In the fall of 1972 Larsen et al. (1979) measured the following concentrations of .total
phosphorus in Shagawa Lake, Minnesota:

Day mgm™? Day mgm™} Day mg m™}
250 97 270 72 290 62
254 90 275 51 295 55
264 86 280 §7 300 48

Itis known that the primary reason for the reduction in concentration during this period
was the settling of particulate phosphorus. | f the lake is assumed to acr as a batch reactor

and settling is assumed to follow a first-order process, determine the removal rate of
total phosphorus for'the lake. If the lake's mean depth is 5.5 m, calculate the settling

velocity for total phosphorus.

2.8. Population dynamics is important in predicting how human development of a water-
shed might influence water quality. One of the simplest models incorporates the as-
sumption that the rate of change of the population p is proportional to the existing
population at any time ¢:

dp
=G P2
dr P (P28)
"Limnology is the study of Lakes The termunolagy is derived from the Greek word for lake: limnos
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where G = the growth rate (yr™"). Suppose that census data provides the following
trend in population of asmall town over a 20-yr period:

(| 1970 1975 1980 1985 1990
| 100 212448 . 949 2009

If the model (Eq. P2.8) holds. estimate G and the population in 1995.

2.9. The world took about 300 years to grow from about 0.5 billion to 4 billion people.
Assuming first-order growth, determine the growth rate. Estimate the population over
the next century if this rate continues.

2.10. Many takes intemperate regions are thermally stratified in the summer, consisting of an
upper layer (epilimnion) and a lower layer (hypolimnion). In general the surface layer
has dissolved oxygen concentration near saturation. If it is productive (that is, has high
plant growth), settling plant matter can collect in the hypolimnion. The decompasiticn
of this matter can then lead to severe oxygen depletion in the bottom waters. When
turnover occurs in the fall (that is, vertical mixing due to decreasing temperature and
increasing winds), the mixing of the two layers can result in the lake's having an oxygen
concentration well below saturation. The following data were collected for Onondaga
Lake in Syracuse, New York:

Date | Sep.30 Qct.3 Oct.6 Oct.9 Oct.12 Oct. 15 Oct.18 Oct. 21
Oxygen conc. |, 4.6 6.3 7.3 80 8.4 8.7 8.9 9.0
(mg LY

If the saturation concentration is9.2, usethisdatato evaluateafirst-order reaeration rate
for the system (unitsof d~'). Assume that the lake acts as an open batch reactor; that
is, ignore inflows and outflows of oxygen except gas transfer across the lake's surface.
Also, express the rate as a transfer velocity (unitsof md™'). Note that Onondaga L ake
has a surface area of 11.7 kin? and amean depth of 12 m.

2.11. A reaction has a Q,y of 2.2. If the reaction rate at 25°C is 0.853 wk™', what is the
reaction rate at 15°C?

2.12. A commonly used anesthetic is absorbed by human body organs at a rate proportional to
itsconcentration in the bloodstream. Assume that a patient requires 10 mg of the anes-
thetic per kg of body weight to maintain an acceptable level of anesthesiafor surgery.
Compute how many mg must be administered to a 50-kg patient to maintain a proper
level for a 2.5-hr operation. Assume that the anesthetic can be introduced into tlie pa-
tient's bloodstream as a pulse input and that it decays at a rate of 0.2% per minute.

2.13. Estimate the age of the fossil remains of a skeleton with 2.5% of its original carbon- {4
content. Note that carbon-14 has a half-life of 5730 yr.

2.14. In 1828 Friedrich Wohler discovered that the inorganic salt ammonium cyanate
{NH,OCN) can be converted into the organic compound urea (Nil;CONH;), asin

, NHOCN (aq) — NH;CONH, (aq)

The proof that this reaction Occurred marked the bq,mnmg of modem organic and bio-
somcbbhn Eataining data for an exnerttient inttially
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| | RV R ih,
Time (min) | 0 20 50 65 150 '

NHOCN (mole L") } 0381 0264 0.180 015t 008 °

Determine the order and rate of the reaction.

2.15. You perform a batch experiment and develop the following data:

t ] 0 2 4 6 g 1o

c ' 100 85 75 67 62 .58
You know from experience that the reaction should be following a third-order reaction.
Use thisinformation and the integral method to determine a value for the reaction rate.

2.16. Suppose that the temperature dependence of areaction rate isbased on itsvalue at 25°C
(notethat this is the convention in areas such aschemical engineering). For example

K(T) = 0.1(1.06)7 2
Reexpress this relationship based on the rate's value at 20°C.

217.  The following data for concentrations and times were developed for a series of batch
experiments having different initial conditions:

4 l [

0 100 200 500 1000 .
1 095 187 4.48 8.59

2 091 174 404 7.46

Assuming that Eq. 2.7 holds, use the method of initial rates to determine the order and
rate of the reaction.

218 Assuming that Eq. 2.7 holds, use the method of half-lives to determine the reaction or-
der and rate by evaluating the following half-lives and initial concentrationsdeveloped
from a series of batch experiments:

Co J l 25 10

wo | 16 1t 7 s

219, Assuming that Eq. 2.7 holds, use the integral least-squares method to determine the
reaction order and rate by evaluating the fotlowing data collected from a batch experi-
ment: ,

{ | 0 2 4 6 8 10
¢ [ 10 75 58 46 38 3.1

2.20. The concentration of inorganic phosphorus in natural waters is usually expressed as

phosphorus (P). However, it is sometimes expressed asphosphate(PO ). When reading

ascientific article unit cre that an Actitcams hac an inmrmanin shornh

i R FaTa oL RPNy IR o
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10 mg m™. As is sometimes the case no guidance is given regarding how the concen-
rration is expressed. How does the concentration change if itis actually mgPOy m™37
By what factor would you be off?

2.21. A more complete representation of the decomposition reaction is provided by
Cl%H)@]O{]ON](,P) + 10702 + 14H* — 106C0O; + M)NH,;* + HPO.}Z< + 108”20

In contrast to the simplified version in Eq. 2.3, this reaction reflects that organic matter

contains the nutrients nitrogen (N) and phosphorus (P). On the basis of this equation,

given that 10 gC m™3 of organic malter is decomposed, calculate

(a) the stoichiometric ratio for the amount of oxygen consumed per carbon decom-
posed, ro. (g0 gC")

(b) the amount of oxygen consumed (gO m™ )

(¢) the amount of ammonium released {expressed as mgN m™3)

¢




