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FIGURE 3.1 
A mass balance for a well-mixed lake. The 
arrows represent the major sources and 
sinks of the pollutant. The dashed arrow 
!or the reaction sink is meant to distinguish 
i! from the other sources and sinks, wtiich 
are transport mechar~isms. 

rnodelirig water quality. I'or a finite tillie period the mass b:ll;lrice for the systein can 
be expressed as 

Accutliula[ion = loading - outflow - reaction - setllirlg (3.1) 

T i ~ u s  rtlere is a single socrrce tl,;tt contributes rnatter (1o:itling) and llisee sinks 
that deplete matter (outllow, reaction, and settliiig) froin the syslern Note that ~ltlicr 
sources and sinks coillci have bee11 inclt~ded. For example volatilizatior~ losses (that 
is, transfer of the ~,ollut;int from [lie water to the atnlospl~e[-e) could exit across tile 
lake's surface. However, for si~nplicity, we Iirnit ourselves to the sources and sinks 
depicted in Fig. 3.1. 

Although E q  3.1 has descriptive value, it cannot be used to predict water qual- 
ity. For this we niust express each tern1 as  a function of lneasurable variables and 
parameters. 

Accumulation. Accuniulation represents the change of mass M in the system 
over tinie t : 

h?ass is related to co~icentration by (Eq. 1.1 ) 

where V = volurrle of  systelll (L'). Eq~iation 3.3 can he solved for 

M = Vc (3.4) 

which can be substituted into Eq. 3.2 to give 
a vc 

Accumulation = - A I 

In file present case we jssunic that [he lake's volume is constant.' Ttiis assumption 
allows us 10 bring the term V outside the difference: 
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.-. Finally At can he made very srnall 3 rd  Eq. 3.4 reduces to 

: Thus mass accumulates as concentration increases with time (positive t i c id r )  and 
diminishes as concentration decreases with time (riegative rlcldr). For the steady- 
state case, mass renuins constant ( t lc lci~ = 0 )  Note that the units of accumulation 

$ (as with all other tenns iri the balnrice) are mass per tirrle (M T-I). 
- 
:,- Loading. Mass enters a lake frorn a variety of sclurces and iri a number of differ- 

- ent ways. For example rnass carried by treatment plant effluents and tributary streams 
4' enters a lake at a point on its periphery. I n  contrast atmospheric sources, such as pre- 
y, 

cipitation and dry fallout. are introducecl in a distributed fashion across the air-water 
%. inkrface at the lake's surface. Whereas the position arid rnanner of entry of load- 

ings would have fuiltlarnental importance for incon~pletcly rriixed water bodies such 
. as  streanis and estu;iries, i t  is unimportant for our co~llplctely mixed systern. .I.his is 
j because, by dcfiriit i(~i,  all i~iputs  are ii~stantaneousiy distributed throughout the vol- 

ume. Thus, fol- the present case, we lump all loadings into a single term, as in 

where W(r) = rate of ~ r ~ a s s  lox l i~ ig  (M T - ' )  arld ( I)  signifies that loading is a function 
. of time. 

It should be noted rhat in a later part of  this lecture we formulate loading in a 
slightly different fashion than in Eq. 3.8. Rather than ar  a single value W(I),  we will 
represent 11 as llie product (recall Eq. I .3) 

s 

Loading = Qr,,,(r) (3.9) 
: where Q = volurnetric flow rare of all water sources enierilig the systeni (L3  T I )  
i and c,,(r) = average inflow concentra~ion of these sources (bl L - j ) .  Note that we 

have asst l r~~ed that Row is constant and that all the temporal variat~ons in loading 
are tile result of ternporal Variations in the irlflow concentration. Also recognize that 
average inflow corlcerllration can be related to loadirig by equating Eqs. 3.8 2nd 3.9 
and solvilig for 

Outflow. In our siniple systcrn (Fig. 3 .1)  Inass is car-ried from the system by 
. an outflow stream. The rate of r~lass transport car1 be quantified as the product of 
, the volumetric flow rate Q arid t l  e outflow concentration c,,,, ( M  L - ~ ) .  Hut. because 

our well-ri~ixed ~ I S S L I ~ I I ~ ~ ~ O ~ .  tlie ou~floiv cor~centr~atior~ by ilcfirlifio~) egtials tlle 
in-lake concentration (~,,,,, = c ,  and [he outflow sirlk can be representctl by ' 



Reaction. Rithuugh there are many different ways to formulate reactions that 
purge pollutants fiom natural waters, the most coininor1 by far is a first-order repre- 
scntation (recall Eq. 2.10) 

Reaction = k h f  (3.12) 

where k = a first-order reaction coefficient ('T-I). Thus a linear proportionality is 
assumed hetween the rate at which the pollutant is purged and the mass of pollu- 
tant diat is present. Equation 3 1 2  can be expressed in terms of concentration by 
substitutii~g Eq. 3.4 into Eq. 3.12 to yield 

Reaction = k V c  (3.13) 

Settling. Settling losses can be formulated as a Hux of inass across the surface 
area of the sediment-water interface (Fig. 3.2). Thus by multiplying the flux times 
area, a term for settling in the mass balance can be developed as 

Settling = vAIc (3.14) 
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13efore proceeding to solutions for Eq. 3 .16 we should introduce some nornencla- 
ture. Concentration c ancl tirne r are the depenilerlt and the irzdcpcrrdcrrf variables, 
respectively, because the rnodel is designed to predict concentration as a function 
of titne. The loading terrn W ( t )  is referred to as the model's forcirlg function be- 
cause i t  represents the way  in which the external world influences or "forces" the 
systern. Finally the quantities V, Q ,  k ,  11, and A ,  tire referred to as parameters or 
coefficients. Specification of these parameters will allow us to apply our model to 
particular lakes and pollutants. 

/ BOX 3.1. Parameterlzatlon i 
As described in this section, settling losses can be pararneterizs!! ns the product of 1 
settling velocity, surface area, and concentration v A , c .  Ffowevcr~, ns in  Eq. 3.15, the 
settling mechanism can also be "parariieteiized" as a first-order la ic .  This is done by 
multiplying the settli~ig-velocity version by ! I l l 1  and collecting tern15 to yield 

where = apparent settling velocity (L T-I) and A, = surface area of  the sediments 

( ~ 2 ) .  ~h~ settling ve\ocity is called "apparent" because it represents the net effect 
of the vnrio"s processes [hat act to deliver pollutallt to the lake's sedimelits. 

example of the pollulnlt may be in dissolved form and hence not subject lo 
settling, ;-or such cases a "real" settling velocity cannot be used to represent the net 

effect of this mechanism. 
B~~~~~~~ vo~ t lme  is to the product of mean depth and lake surface area 

m, 3.14 also be fonr?ulated in a fashion similar to the first-order reaction. 

as in Now the question arises, is either way superior'? From a strictly n ~ a t h ~ r n a t i ~ ~ l  
Settling = k s V c  standpoint they are identical. F-lowever, because i t  is more fundnlncntal. the settling 

velocity parameterization is superior. D y  funda~nental I mean that i t  more directly rep- 
where k,  = a first-order seltIing rate constant = vlH. Nolice that [he ratio has resents the process being modeled. That is, each cerrn i n  vA,c  represents acharacteristic 
the same units [ T - 1 )  as the reaction rate k .  The  validity of  this representation is of the process that can be measured independently. In  contrast the k ,  term confounds 
c o n t i n g e n t  on  the assunlption that the lake's surface area and the sediment area are two independent properties: settling and depth. 

-rile forrnat  of  ~ q .  3.14 is preferable to Eq. 3.15 because the fomler Wtly is this a problem? First, the k ,  version is system specific (because i t  iniplicitly 
faithfully captures the meciianistic nature of settling, that is, as a mass transfer includes a system-specific property, mean depth) and hence is awkward to extrapolate 
a surface (see Box 3.  i ). to other systems. I f  we  nleasure a k, in a particular syslem, we could use i t  only in other 

systems of the same dei~th. Thus, to extrapolate to a system with a different depth, we 

~ ~ t ~ l  balance. The terms can now be combined into the following mass balance would have to revert to the settling velocity format anyway. Second, what if depth is 
changing? For this case the use of k ,  clearly breaks down. 

for a well-mixed lake: Now, where might confounding parameters be advantagecur? For one thing, 
within a mathematical calculation for a particular systenl, n,e o'!en find i t  useful to 
collect terms for matherrlatical convenience. Second, i t  is often o r  uqe to collect terms 
so that processes can be compared in coinmensurrite units. For example the relative 
magnitudes of settling and a reaction could be assessetf by compnring ijlN versus k .  
Finally there are some instances where we might confound several parameters beca~rse 
one or more do not vary between systems and/or thcy are difficult to measure. 

Throughout the remainder of this book the issue of proper parameterization will . 
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3.2 STEADY-STATE SOLUTIONS 
. I  ! . 

If the system is subject to a constant loading W for a sufficient time, i t  will attain 
a dynamic equilibrium condition called a steady-stute. In mathematical terms this 
means that accumuiation is zero (that is, dc ld t  = 0). For this case Eq. 3.16 can be 
solved for 

or  using the format of Eq. 1.8, 

where the assimilation factor is defined as 

a = Q + kV + vA,  , (3.19) 

The steady-state solution provides our first illustration of the benefits of the 
mechanistic approach. 'That is, it has successfully yielded a formula that defines the 
assimilation factor in terms of measurable variables that reflect the system's physics. 
chemistry, and biology. 

, 
EXAMPLE 3.1. hIhSS BALANCE. A lake has the following characterrstics. 

Volume = 5 0 , m  m3 
Mean depth = 2 m 
Inflow = outflow = 7500 rnJ d- '  
Temperature = 25°C 

The lake receives the input of a pollutant from three sources: a factory discharge of 
50 kg d-I.  a flux from the atmosphere of 0.6 g m-2 d- ' .  and the inflow stream that has 
a concentration of 10 mg L ' .  I f  the pollutant decays at the rate of 0.25 d-I at 20°C 
(e  = 1.05), 

( a )  Cornpuir rhe assimilation factor. 
(b)  Determ~nc the steady-stale concentration. 
(c) Calculate the mass per time for each tern in the mass balance and display your 

results or. a plol. 

Solution: ( a )  Vle decay rate must first be corrected for te~nperature (Eq 2.44): 

k = 0.25 x 1 0525-20 = 0.319d-'  

Then [he assimilation factor can be calculated as 

Notice,how the units look like now (that is, voluine per tirne). This is because the same 
mass units are used in the nunierator and the denominator and tlley cancel, as in 
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( b )  The surface area of the lake is needed to c3lculate the atn~osplie~ic loading 

A = - = =  " 2 5 , ~  m2 

I /  2 
The atrnosptieric load is then cornpuleti as 

b+',,m,spht,, = J.4, = 0.6(25,000) = I S , O  g d - '  

The load from the inflow stream can be calculated as 

kVlnfiaw = 7500(10) = 75 ,300gd- '  

??isrefore the total loading is 

W = Wracma + Watmosphcrc + W,n~ow = 5 0 , W  -t 15,000 + 75,(i00 = I JO.GOO g d-' 

and the concentration can be deternlined as (Eq. 3.18) 

I 1 
c = - I.V = - 1 4 0 . W  = 5.97 mg L- '  

(1 23,451 

(c) The loss due to flushing through the outlet can be computed as 

Qc = 7500(5.97) = 14,769 g d- I  ? 

and [he loss due to reaction as 

k V c  = 0.319(50,000)5.97 = 95,231 g d-I 

These results along with the loading can be displayed as in Fig. 3.3. 

The  representation in Fig. 3.3 can now be related back to the parable of the 
blind men and the elephant. Each arrow, representing a source or sink mechanism, 
is analogous to the individual parts of the elephant. I (  is only when they are ticcl 

Factory Atmospherlc 
Inflow loadlng loadlna 

loadlng 50 kg d--l :; 15 kg d l 1  Outflow 
75 kg d - 7  (35.7%) (10.7%) 44.8 kg d -' 

w - - FIGURE 3.3 
/ A mass balance for the well- 

mixed lake from Example 
3.1. The arrows represent 
the major sources and sinks 
of the pollutant. The mass- 

- 4  transfer rates have also 
been included along with 
the percent of total mass 

95':6:!0P ' Inflow accounled for by . . 
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[ugsthe; b y  the mass  balance  tliat w e  can  assess their cornbi i~ed effect .  T h u s  the  
model provides an integrated v iew of t!ie systern. 

1 BOX 3.2. "Stream-of Consc1ousne.s~" Versus "Cartoon" Modellng 7 
I "Str;am of cansciousness" is a psychological term, coined by the psychologist Will ian~ 

James, that characterizes irrdividual corlscious experience as a succession of states con- 
stant!y ninl ing onward in time. The idea has been transferred to literature in the for171 

I 
of i o e a ; i i - o f - c o n s c i o ~ ~ s n e ~ ~ ~ ~  writing. In its finest expression an individiial's interior 
rnorlo!ogue is used to reveal character and comment on life. At its worst i t  amounts to 
a self-indulgent r~iind dump. 

Unfortunately marly creative exercises can be approached in the latter fashion. 
For example cornputer programs are often written w~thour pdor thought. Individuals 
sit down ac a computer console and just begin typing. Invariably the final result (as 
well as the ultimate iime investment) suffers from the haphazard approach and lack of 
design. 

Mathematical models can also be developed in a stream-of-consciousness fashion. 
There is often the tendency to start writing mass balances without adequate forethought. 
As expectcil,' the results are often incorrect or incomplete. In the best case a correct 
model restilts only after many time-consuming revisions. 

Sonic simple steps can be applied to avoid such pitfalls: 

Draw o diaxrnm. f7nr tile siriiplc well-mixed models described up  to now. this merely 1 consiits of sketching the niajor so~irccr and sinks oftlie pollutant being mo,'eled. Al- 
l thoupti this lnight seem trivial, \tie act of drawing forces you to delineate the rncctt- 

anisms governing pollutant dyna~nics.  in later lectures, as we deal with multiple 
pollutants in segmented systems, diagrarns w ~ l i  become essential. Dr. Bob Broshears 
u i  the IJS. Geological Survey calls this "canoon modeling." Although this terminol- 
ogy 11:!2ht sound flippant, it is not meant to be. Experienced modelers r eco~n ize  tlial 
a well-thought-out schematic is critical to keeping track of all the variables and pro- ' cesses in a iomplicated model. 

* Wrire eq~mrions. Afrer a schematic is developed. it can be translated into model equa- 
tions. For the simple case discussed so far, each arrow represents a term in the mass 
balance. In later lectures, there will be many variables (boxes) connected by many 
Drocesses (arrciws). Thus the schematic provides a guide for ensuring that the math- 
e r n a t ~ c ~ l  characterization is complete. 
Obtczin a salutio,~. This can be accomplished exactly (algebra or calculus) or approx- 

1 imately (numerical methods). For more complicated systems, cornpulers are neces- 
sary .  

0 C/lec-k resulrr. Ttiis last s(ep is sometimes neglected by the novice modeler. Too 
nlang people trust model ~>utput i f  ii '.!oaks rea5onable." Unfortiinately this tendency 
incrc;lses when computers are involved. And i f  the results ;ire (Jisplayed in high- 
rcz:,i:lliori gr;ipliics in iritrltiple colors, certain i~~(liviriuals lose any ve~ t ige  of skcpri- 
cisril. Therefore, whether checking a homework solution or a 1;lrge professiunal cude, 
sufficient testing is rcquired to emsilre that the r~lodel is p roduc i~~g  correct results. Be- 
yt,r,rl obvious ;lad easily ieci!gni/able bloopers ( r g ,  a neg:itrve concentration:, tile 

1 \ ~ r ~ ~ p l ~ , , !  \ t , i ~ ~ i ~ ~ g  poir\t is to c l ~ r c k  tt~at Inass is conserved R C ~ C I I I , ~  O~at,  rnore co111- 
, a , a t r : . , {  f , L  $ 1 ;  I , > , , <  1, , , t i  lj:,.\v 1 r,-,  it,,.^, ITIO,IC.I ~ I L ~ ~ ; C ~ I I ~ I I I C I I ~  
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3.2.1 Transfer Functions and Residence Time 

Aside  f rom the assimilation factor, there  a r e  a variety of o ther  ways to summar ize  
the ability of a steady-state sys tem to assin\li;\te pollutants.  

Transfer function. A n  alternative w a y  to f o m ~ u l n t e  Eq. 3.17 is based on ex -  
pressing the loading in the format of Eq. 3 .9 .  Fo r  the sicady-state ca se  this is 

w = &in (3.20) 
Equation 3 . 2 0  can  be  substi tuted into Eq. 3 . 1 7 ,  a n d  both the  numerator and  denom-  
inator o f  the result can  be  divided by ci, to y ie ld  

L l n  

where  /3 = the transfer function 

Q ' = Q +  k V + v A ,  (3.22) 

E lua t ion  3 .22  is called a t ran .s fer f i~nct ion '  because  i t  specifies how the  sys tem input 
(as represented by (I,,) is  t r a n s f o m e d  o r  " transferred" to a n  output  ( a s  represented by 
c). Examination of Eq. 3 . 2 2  provides  ins ight  in to  h o w  the  model  "works." If 0 << I ,  
then the  lake's removal mechan i sms  will  ac t  to greatly reduce  the level of pollutant 

in the lake; that is, such a lake  h a s  grea t  ass imi la t ive  capacity.  Conversely if -+ 1. 
then the  1,ake's remov:~l mechan i sms  ( the  denoni inator)  are weak  relative to its supply  
mechanism ( the  numerator).  Fo r  s u c h  cases  t he  polItit;~nt level will approach that of 
the inflow. In other words  the  lake's  ass imi la t ive  capaci ty  is minimal .  

T h u s  the lake's  assimilative capaci ty  c a n  b e  evaluated  by the tiirnensionless 
number  P .  Inspection of Eq. 3.22 indicates tha t  for [he s imp le  model in Fig.  3 .1 ,  
assimilation increases for large values  o f  reaction rate,  sett i ing velocity, volume, 
and area.  Note that flow which appea r s  in both the numerator  and the denomina-  
tor acts to both increase and dec rease  assimilation.  It increases assimilation a s  it 
reflects Rushing of pollutant through the lake's  outlet .  It decreases  assimilation a s  
it reflects delivery of pollutant through the Iake's inflow. 

Residence time. T h e  res idence  t ime  7, of  a subs tance  E represents the  mean  
amount o f  t ime that a molecule  o r  particle of E would  s tay  o r  "rcside" in a sys t em.  It 
is defined for a steady-state,  cons tant -volume sys t em as ( S t u m m  and Morgan 1981)  

where E = qua~ i t i t y  o f  E i n  thc  v o l t l ~ r ~ c  (e i ther  M or  M I.-') antl IriJi'ltltlr = absolute  
value of  either the sources o r  the s inks  (z i ther  M T - '  or M I-- '  7 - I ) .  

O n e  of  the s i r ~ ~ p l e r  appl ica t ions  of Eq. 3.23 is the  i icterrl~ination of the residence 
tinie of  w a f e r  in a lake. S ince  the tlensitp of water  is t)y defnil iorl  approximate ly  
1 g crn', the qt1nntity of watcr  in a I:ikc is ecluivaler,! to its volunle. In a s imi lar  
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where 

Q v , i = - + k + -  (3.34) 
V H 

in which A is ca!led an e i g e n v a [ ~ e  (that is, 3 characteristic value). 
if ail d,e plriin~ters ( Q ,  \I, P, V ,  /I) are constant. E q  3.33 is a ~lollhomogeneous* 

iineu, first.order, differc[ltial equation. Its solution consists of two pans. 

(3.35) c = c, + C p  

The femporal response of our well-mixed 
where c, = general scldtion for the case W(r)  = 0 and cp = ~ ~ " ~ ~ " l "  so 'ut ion 1 

I lake model following the termination of a l l  
specific famms of W ( 0 .  loadings at = 0. 

B~~~~~~ he solution corresponds to the case where the loading is ler- 
_inLcd, it is ;i!cal for invcs[igating a system's r ecoven  tilllc. As described next we car' 'low iilterL'ret Eq.  3.36. As in Fig. 3.6 [Ile n e g a t i v e  v a l u e  o f  ar- .,,,ill also provide us with insight into the shape of the recovery. f;'; "cnt t'attlleconCentration decreases and a sympto t i ca l~y  approaches zero, 

'' 'ler lhe rate of decrease IS dictated by the magnitude of [he e i g e n v a l u c  A ,  I f  ,,, is 
' "be, lhe  lake'^ concelltra[ion will decrease rapidly, i f  A i s  s m a l l ,  lake.s 

3.3.1 The G e n e r a l  S o l u t i o n  will be slow. 

rf  = c ,  = 0, E ~ ,  3 3 3  wirh W(1)  = 0 can be  solved by the separation 
ables (recall solution of Eq. 2.10): BXAMPL,1'3.3' C;ENERAI,  SOLUTION. I n  Example 3.1 we determined the steady- 

concentration for a lake having the f o l l o w i n g  ct,araclerislics: 
c = (3.36) 

\'oturne = 50,000 ml  ; 'rtrnperarure = 2 5 0 ~  
~h~~ have ai*v,d an equation that describes how the lake's concentralion hfcan depth = 2 m \.Vasle loading = 140,000 d-1 

a funcnon of tinle foliowing the terrninatio11 of Waste loading, 
m o w  = = 7500 In3 Decay rate = 0319d-1  

ne ~ ~ l a r i v r  of ~ q ,  3.36 is clearly dictated by the exponential func t ion  As 
I f  I h e  'ni t 'a1 concerltrallon is equal lo [lie steatJy-state level  (5.97 n,g L I , ,  detrrn, ine !he 

in ~ i ~ ,  3.5,  for [he case wkere [he argument of the function ( h a t  is. Ille lo ,general solilr ion. 

which is is [he functian's vaiiie is un i ty  n e r - d e r  if 

[he argument is  posi"ve, be function increases in an accelerated hshion;  that is. Solution: The eigenv:lic~e call t,e c o n , p , l t e ~  

it doubles ill value at  set intcruals of r ( =  0.693) In contrast i f  the argument i s  L2 7 5 00 
A = - + k = - _ _ .  

negative, he flil,cljon asymptotically decreases toward zero by llalving at the V 50.000 i- 0.319 = 0,.169d-' 

' set intervals. , f i u s  the general solullon i s  
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which can be displayed graphically as 

t (4 FIGURE E3.3 

Note thal by r = 5 d the concentration is reduced to less than (0% of its origirlill value. 
By t = 10 d. for all intents and purposes, i t  has reached zero. 

An interesting property of the general solution is that even though the loading 
is reduced to zero, the concentration will never reach zero. This introduces an ele- 
ment of arnbigulty into the analysis. We now attempt to resolve this ambiguity by 
introducing the c o n i t p t  of response tirne. 

3.3.2 Response Time 

Although Lbe parameter group A clearly dictates the I&e's te~nporal  response char- 
.. 

acleristics, it has shortcomings for communicating with decision makers. First, i t  
has the counterintuitive property that as it gets large the time for Lhe lake lo resporld 
gets small. Second, as mentioned in the previous section, its interpretation is clouded 
by the fact that. frorrl a strictly mathematical perspective, the underlying cleansing 
process never :eacl;cs cornpletion Try telling ;I politician that a cleanup would the- 
oretically take f~ j r rve r !  They tend to react very unfavorably to asyn~ptotic solutions 
b a t  extend bcyor!~! the ncxt cleclion. 

Roth these s h o ~ ~ c o r n i n g s  can be rectified by using the general solution to derive - . ..~ -~ - 
a new parameter group. Called the respor~se lime, this paranleter group represents 
the time i t  takes for r l~e  lake to corrlplete a fixed percentage of its recovery. Thus  the 
problem of ambiguity is relnedied by deciding "how rlulch" o f  the recovet~y is judged 
as being "enougll." For exarr~ple we [night assulue that i f  the lake has e,x[)eriei~ced 
95% of  its recovery we would be satisfied that, for ;ill practical ptrr-poses, tile lenlc- 
dial measure is successful. 

I n  rerrrls of Es. 3.36 a 50% rcsponse tir~re [,\cans that the cci~lcentration is lowered 
to 50% of  its initial valilc, or 

where rso = 50% resporlse time (T).  Dividing by the exponential and 0 . 5 0 ~ ~  yields 

e A f m  = 2 (3.38) 

I . L C I L U I ~  I Mar\ r%dlilrl~e. Steady-State Solut~orl, arid Kespori5e 1.ilne 61 

TABLE 3.1 
Response times 

Response time I,,, 161 1 l71 I90 191 199 

Formula 0.693lA I 1 3 0 / A  2 3 / A  3 / A  4 O I A  

Taking the natural logarithn~ and solving for rso  gives 

Thus we can see  that the 0.693 we observed previously (recall discussion of Fig. 3.5) 
is actually the natural logarithm of 2. Note that the quantity r5o is also commonly 
referred to as a half-life (recall Sec.  2.2.4). 

The above derivation can be generalized to compute an arbitrary response tinis 
by rh~: forrnula 

where = cb% response time. For example if we  are interested in determining how 
long it takes to reach 95% of its ultimate recovered level, we  could compute 

Table 3.1 and Fig. 3.7 show other response limes. As would be expected, the 
higher the percentage of recovery, the longer [he response time. 

, 
FIGURE 3.7 

1 5 0  1 7 5  I W  19s  A plot of the general solution showing values 
t /h 01 several r e s ~ o n s e  times 

EXiihiIII,E 3.4. ~ E S P O N S E  'I'IhlE. Dctrrrniire [he 75%. 90%. 9.5%. and 99% re- 
sponse rimes for the lake in  Example 3 3. 

Sol~tlon: I'lle 75'70 response time can 112 cornputed as 

In a sinlilar frlsl~ion we can compute rw = 3 9 d ,  rq5 = 6 4 d, and rw = 9 8 d 
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