LECTURE 3

Mass Balance, Steady-State Solution,
and Response Time
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Now that we have reviewed some fundamental concepts, let’s tie them together and
actually develop a water-quality model. Then we will solve the model (o answer the
Iwo most commonly posed questions in water-quality modeling: If we institute a
treatment program,

¢ How much will the water body improve?
* How long will it take for the improvement to occur?

3.1 MASS BALANCE FOR A WELL-MIXED LAKE

A completely mixed system, or contintously stirred tank reactor (CSTR), is among
the siriplest systems that can be used to model a natural water body. It is appropri-
ate for a receiving water in which the contents are sufficiently well mixed as to be .
uniformly distributed. Such a characterization is often used to model natural fakes
and some impoundments,

A hypothetical completely mixed system is depicted in Fig. 3.1. Note that I
have included a number of sources and sinks that are {ypically encountered when
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Loading Outflow
N FI GURE 3.1
— A mass balance for a well-mixed |ake. The
- arrows represent the mgjor sources and

i NS sinks d the pollutant. The dashed arrow
N lor the reaction sink is meant to distinguish
\\——}——/ it from the other sources and sinks, which
Settling are trangport mechanisms.

modeling water quality. For afinite time period the mass balance for the systerm can
be expressed as

Accumulation = loading — outflow — reaction — settling 31

Thus there is a single source that contributes matter (loading) and three sinks
that deplete matter (outfiow, reaction, and settling) from the system. Note that viher
sources and sinks could have been included. For example volatilization |gsses (that
is, transfer of the poflutant from the water to the atmosphere) could exit across the
lake's surface. However, for simplicity, we limit ourselves to the sources and sinks
depicted in Fig. 3.1.

Although Eq. 3.1 has descriptive value, it cannot be used to predict water qual-

ity. For this we must express each term as a function of measurable variables and
parameters.

Accumulation. Accumulation represents the change of mass M in the system
over time :

AM

ation = — (32
Accumulation Al
Mass is related to concentration by (Eq. 1.1)
M
L= (3.3)
Y
where ¥V = volume of system (L?). Equation 3.3 can he solved for
M = Vc (3.4)
which can be substituted into Eq. 3.2 to give
] AVe 15
Accumulation = A+ (3-3)

In the present case we assume that the lake's volume is constant." This assumption
allows us to bring the term V outside the difference:
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Accumulation = V E

A1 (3.6)

Finally Af can he made very small and Eq. 3.4 reduces to

{ ~
Accumulation = v©¢ 3.7
dt -
Thus mass accumulates as concentration increases with time (positive d¢/dt) and
diminishes as concentration decreases with time (negative dc/dr). For the steady-
state case, mass remains constant (d</d¢ = 0) Note that the units of accumulation

(as with all other terms in the balance) are mass per time (M T!).

Loading. Massentersalake frorn avariety of sources and in a number of differ-
ent ways. For example mass carried by treatment plant effluents and tributary streams
entersalake at a point on its periphery. In contrast atmospheric sources, such as pre-

cipitation and dry fallout. are introduced in adistributed fashion across the air-water
interface at the lake's surface. Whereas the position arid manner of entry of load-

ings would have fundamental importance for incompletely mixed water bodies such
as streams and estuaries, it is unimportant for our completely mixed system. This is

because, by definition, al inputs are instantaneously distributed throughout the vol-
ume. Thus, for the present case, we lump all loadingsinto asingle term, asin

Loading = W(r) . (3.8)

where W (1) = rateof mass loading (M T~ ') and (1) signifiesthat loading isafunction
of time.

It should be noted that in a later part of this lecture we formulate loading in a
slightly different fashion than in Eq. 3.8. Rather than as asingle value W (r), we will
represent it as the product (recall Eg. |.3)

*

Loading = Qc;, (1) (3.9)
where Q = volumetric flow rate of all water sources entering the system (L T7')
and cis(t) = average inflow concentration of these sources (M L™3). Note that we
have assumed that Row is constant and that all the temporal variations in loading
arethe result of temporal Variations in the inflow concentration. Also recognize that

average inflow concentration can be related to loading by equating Eqs. 3.8 and 3.9
and solving for

/
Cinll) = Q)

(3.10)

Outflow. In our simple system (Fig. 3.1) mass is carried from the system by
an outflow stream. The rate of rnass transport can be quantified as the product of

] the volumetric flow rate Q and tl e outflow concentration ¢, {M L™?). Hut. because
t’d of our well-mixed assumption, the outflow concentration by definition equals the
in-lake concentration ¢, = ¢, and the outflow sink can be represented by

-
ion i ; - i ray : p g ny lakes and

* Although this is a good assunmiption in many cases, it is not always true. For example many b \ ’
! S e Vhnieedd Srates are used for power production and water supply. Some o

3}
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Reaction. Although there are many different ways to formulate reactions that
purge pollutants from natural waters, the most common by far is a first-order repre-
sentation (recall Eq. 2.10)

Reaction = kM (3.12)

where k = a first-order reaction coefficient (T™'). Thus alinear proportionality is
assumed between the rate at which the pollutant is purged and the mass of pollu-
tant that is present. Equation 312 can be expressed in terms of concentration by
substituting Eq. 3.4into Eq. 3.12 toyield

Reaction = kV«¢ (3.13)

Settling. Settling losses can be formulated as a Hux of mass across the surface
area of the sediment-water interface (Fig. 3.2). Thus by smultiplying the flux times
area, aterm for settling in the mass balance can be developed as

Settling = vAsc (3.14)

v = apparent settling velocity (LT "and 4; = surface area of the sediments
(L2). The settling velocity is called "apparent” because it TCPTCSE'MS ‘hf: net off€Ct
OTT t{ie variots processes that act to deliver pollutant to the lake's sedxment.s.
example some of the pollutant may be in dissolved form and hence not subject to
settling. For such cases a “real” settling velocity cannot be used to represent the net
effectof this mechanism. ]
Because volume is €aual to the product of mean depth 11 and lake Sl’rf“ce‘ area
Ay, Eq. 3.14 €an also be formulated in a fashion similar to the first-order reaction,

asin

where

Settling = k;Vc¢ (3.15)

; ; has
where k, = a first-order settling rate constant = v/H . Notice that the ratio v/H

the same units (T~!) as the reaction rate k. The validity of this representation 1s
contingent on the assumption that the lake's surface area and the sediment area are

The format of Eq. 3.14 is preferable to Eq. 3.15 because the former
faithfully captures the mechanistic natureof settling, that is, as a mass transfer
asurface (see Box 3.1).

Total balance. The terms can now becombined into the following mass p3jance
for a well-mixed lake:

9 _ Wy - Qc — kVe ~ vAsc (3.16)

Sediment-water

lnta.r?aca ' \ - - \})f,

e ; 2Ry
by LH TR FIGURE 3.2

Qetttirng tnreng fnrmptated as a flux of moass

f

A
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Before proceeding to solutions for Eq. 3.16 we should introduce some nomencla-
ture. Concentration ¢ and time ¢ are the dependent and the independent variables,
respectively, because thie model is designed to predict concentration as a function
of titne. The loading terrn W{(t) is referred to as the model's forcingfunction be-
cause it represents the way in which the external world influences or "forces" the
system. Finally the quantities V, Q, k, v, and A, are referred to as parameters or
coefficients. Specification of these parameters will allow us to apply our model to
particular lakes and pollutants.

| ]
BOX 3.1. Parameterlzation

As described in this section, settling losses can be parameterized as the product of

settling velocity, surface area, and concentration vA,c. However, as in Eq. 3.15, the

settling mechanism can aso be “parameterized” as a first-order ratc. This is done by

multiplying the settling-velocity version by ///H and collecting terms to yield

vA e = Y Ame = kv
,cH—H( e = k V¢

where k; = a settling first-order rate constant (T~!) that is equal to A

‘l
k, = —
H

Tlﬁis alternative formulation has been commonly employed in water-quality mod-
eling,

Now the question arises, is either way superior? From a strictly mathematical
standpoint they are identical. However, because it is more fundamental, the settling
velocity parameterization is superior. By fundamental | mean that it more directly rep-
resents the process being modeled. That is, each term in vA, ¢ represents a characteristic
of the process that can be measured independently. In contrast the &, term confounds
two independent properties. settling and depth.

Why isthis aproblem?First, the k, version is system specific (becauseit implicitly
includes a system-specific property, mean depth) and hence is awkward to extrapolate

to other systems. |f we measure a k, in a partjcular system, we could pse it only in other
systems%f the same &;nh. Thus, to extr%polate to a)lsystem with aoh?fcerent gepth, we

would have to revert to the settling velocity format anyway. Second, what if depih is
changing? For this case the use of k; clearly breaks down.

} Now, where might confounding parameters be advantagecus? For one thing,
within a mathematical calculation for a particular system, ~we often find it usefy) 1o
collect terms for mathematical convenience. Second, it is often of use to collect terms
0 that processes can be compared in commensurate units. For example the relative
magnitudes of settling and a reaction could be assessed by comparing v/# versus k.
Finaly there are some instances where we might confound several parameters because
one or more do not vary between systems and/or they are difficult to measure,

Throughout the remainder of this book the issue of proper parameterization will .
continuously arise as we attempt to quantify the processes observed in natural waters.

When it arises we will discuss its farther nuances.
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3. % .STEADY-STATE SOLUTIONS

If the system is subject to a constant loading W for a sufficient time, it will attain
a dynamic equilibrium condition called a steady-state. In mathematical terms this
means that accumuiation is zero (that is, dc/dt = 0). For this case Eq. 3.16 can be
solved for

c = w__ (317
O+ kV + vA;
or using the format of Eq. 1.8,
c=tw (3.18)
a
where the assimilation factor is defined as
a=Qt kv tva , (3.19)

The steady-state solution provides our first illustration of the benefits of the
mechanistic approach. That is, it has successfully yielded a formula that defines the
assimilation factor in terms of measurable variables that reflect the system's physics.
chemistry, and biology.

EXAMPLE 3.1. MASS BALANCE. A lake has the following characteristics:

Volume = 50,000 m?

Mean depth = 2 m

Inflow = outflow = 7500 rm* d ™
Temperature = 25°C

The lake receives the input of a pollutant from three sources: a factory discharge of
50kg d~', aflux from the atmosphere of 0.6 g m™2 d~}, and the inflow stream that has

a concentration of 10 mg L™". If the pollutant decays & the rate of 0.25d™" at 20°C
(8 = 1.05),

(a) Compute rhe assimilation factor.
(b) Determinc the steady-stale concentration.

(c) Calculate the mass per time for each termn in the mass balance and display your
results or. a piot.

Solution: (a) The decay rate must first be corrected for temperature (Eq 2.44):
k=025x105""2 =0.3194d7"
Then the assimilation factor can be calculated as
a =+ kv = 7500 + 0.319(50,000) = 23,454 m? d-!

Notice how the units look like flow (that is, volume per time). This is because the same
mass units are used in the numerator and the denominator and they cancel, as in

oot
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(b) The surface area of the lake is needed 10 calculate the atmospheric loading

The atmospheric load is then computed @

Wamosphere = A, = 0.6(25,000) = 15,000gd”!

The load from the inflow stream can be calculated as

"Vmﬁaw = 7500(10) = 75,000gd~1
Therefore the total loading is
W = Wadoy + Wamosphere T Wingow = 50,000 + 15,000 + 75,000 = 1400600 gd ™"

and the concentration can be determined as (Eg. 3.18)

| 1
c=-W = —— 140,000 = 597 !
a 23,454 0 mL

(c) Thelossdue to flushing through the outlet can be computed as

Qc = 7500(5.97) = 14,7699 d"" ?
and the loss due to reaction as

kVe = 0.319(50,000)5.97 = 95,231 g ¢!
These results along with the loading can be displayed as in Fig. 3.3.

The representation in Eig. 3.3 can now be related back to the parable of the
blind men and the elephant. Each arrow, representing a source or sink mechanism,
is analogous to the individual parts of the elephant. It is only when they are tied

Factory Atmospherlc
Inflow loading loading
foadin 50kgd-' 15 kg d
75 kg dgﬂ (35.3%) ‘ (10.7%) 4&’%’5' 4
(53.6%) / | (32%)
— % I ~———  FIGURE 3.3
A mass balance far the well-
mixed lake from Example
i 3.1, The arrows represent
~. the major sources and sinks
- d the pollutant. The mass-
S e transfer rates have also
‘U\/ Reactlon been included along with
the percent d totd mass
95.2kgd ' Inflow accounted far by

(68%)
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together by the mass balance tliat we can assess their combined effect. Thus the
model provides an integrated view of the system.

BOX 3.2. "Stream-of Cornisclousness” VVersus" Cartoon" Modeling

“Stream of consciousness” is apsychological term, coined by the psychologist William
James, that characterizes irrdividual conscious experience as asuccession of statescon-
stantly moying onward in time. The idea has been transferred to literature in the form
of “'stream-of-consciousness” writing. In its finest expression an individual’s interior
monologue iSused to reveal character and comment on life. At its worst it amounts to
aself-indulgent mind dump.

Unfortunately many creative exercises can be approached in the latter fashion.
For example computer programs are often written without prior thought. Individuals
sit down at a computer console and just begin typing. Invariably the fina result (as
well as the ultimate time investment) suffers from the haphazard approach and lack of
design.

gM athematical modelscan also be developed in a stream-of-consciousness fashion.
There is often the tendency to start writing mass balances without adequate forethought.
As expected,’ the results are often incorrect or incomplete. In the best case a correct
model resuits only after many time-consuming revisions.

Some simple steps can be applied to avoid such pitfalls:

® Drawu diagram. For the simple well-mixed models described up to now. this merely

consists of sketching the major sources and sinksof the pollutant being mo:eled. Al-

though this might seem trivial, the act of drawing forces you to delineate the mech-

anisms governing pollutant dynamics. In later lectures, as we deal with multiple

pollutants in segmented systems, diagrams will become essential. Dr. Bob Broshears

of the 1J.S. Geological Survey calls this**cartoon modeling." Although this terminol-

ogy might sound flippant, it is not meant to be. Experienced modelers recognize that

a well-thought-out schematic iscritical to keeping track of all the variablesand pro-

cesses in a complicated model.

Write equations. Afreraschematic isdeveloped. it can be translated into model equa-
tions. For the simple case discussed so far, each arrow represents a term in the mass
balance. In later lectures, there will be many variables (boxes) connected by many
processes (arrows). Thus the schematic provides a guide for ensuring that the math-
cmatical characterization is complete.

® Obtain aselurion. This can be accomplished exactly (algebraor calculus) or approx-
imately (numerical methods). For more complicated systems, compulers are neces-
sary.

Check results. Ttiis last siep is sometimes neglected by the novice modeler. Too
many People trust model output if it “looks reasonable.” Unfortunately this tendency
increases when computers are involved. And i the results are displayed in high-
resoiution graphics inmultiple colors, certain individuals |ose any vestige of skepti-
cism. Therefore, whether checking a homework solution or alarge professional code,
sufficient testing i required to ensure that the model is producing correct results. Be-

yund obvious and easily recognizable bloopers (e.g., anegative concentration:, the
simplest starting point IS to check that mass is conserved Beyond that, more com-
| Cvired ol i hy o these when Trestew madel development

iz

4T AT A A G e A R R
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3.2.1 Transfer Functlons and Residence Time

Aside from the assimilation factor, there are a variety of other ways to summarize
the ability of a steady-state system to assimiiate pollutants.

Transfer function. An alternative way to formulate EQ. 3.17 is based on ex-
pressing the loading in the format of Eq. 3.9. For the sicady-state case thisis

W = Qci, (3.20)
Equation 3.20can be substituted into EQ. 3.17, and both the numerator and denom-
inator of the result can be divided by ¢;, to yield

=B 321y

where 3 = the transfer function

- Q

B=gvivia, (3.22)
Equation 3.22iscalled a transfer function' becauseit specifies how thesystem input
(asrepresented by ¢} istransformed or " transferred” to an output (asrepresented by
). Examination of Eq. 3.22 providesinsightinto how the model "works." If 8 << I,
then the lake's removal mechanisms will act to greatly reduce the level of pollutant
inthe lake; that is, such alake has great assimilative capacity. Conversely if g — 1,
then the lake’s removal mechanisms(the denominator) are weak relative to itssupply
mechanism (the numerator). For such cases the pollutant level will approach that of
the inflow. In other words the lake's assimilative capacity is minimal.

Thus the lake's assimilative capacity can be evaluated by the dimensionless
number f3. Inspection of EQ. 3.22 indicates that for the simple model in Fig. 3.1,
assimilation increases for large values of reaction rate, settiing velocity, volume,
and area. Note that flow which appears in both the numerator and the denomina-
tor acts to both increase and decrease assimilation. It increases assimilation as it
reflects Rushing of pollutant through the lake's outlet. It decreases assimilation as
it reflectsdelivery of pollutant through the lake's inflow.

Residence time. The residence time 1z of a substance I represents the mean
amount of time that a molecule or particle of E would stay or “reside” in @asystem. It
isdefined for a steady-state, constant-volume system as (Stumm and Morgan 1981)

E
= 2
dETdr] (.23)
where £ = quantity of £in the volume (either M or M .73y and |dE/d1}. = absolute

value of either the sources or the sinks (either M T"1 or M LL=F T 1),

One of the simpter applicationsof Eq. 3.23 isthe dctermination of the residence
time of water in a lake. Since the density of water is by definition approximately
I g cm’, the quantity of water in a lake iS equivalent to its volume. In a similar



sense the “sink” of watet from a lake is
(assuming that evaporation = precipitation
yields the water residence time

since it has a straigh
would be required for the outflow to repla
it is a measure of the lake’s f1
the lake has a long residence time; that is, itisasl
short residence times (high flow and smatl

example for the s

This equation, along with Eq. 3.4, can be
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measured by the magnitude of 1t outflow
). Substituting these values into Eq. 3.23

Y— (3.24)
Q

This relationship1s useful for understanding the general notion of residence time
\forward physical interpretation—it is the amount of time that
ce the quantity of water in the lake. Thus
ushing rate. If the volume is large and the flow is small
ow flusher. Conversely lakes with
volume) are referred to as fast flushers.
ute a “‘pollutant residence time.” For
n be represented on a Mass basis by

Tw =

Equation 3.23 can also be used to comp
ystem in Fig. 3.1, the sinks ca

\‘%!\ = Qc + kVc + vA,C (3.25)
t b

¢

substituted into Eq. 3.23 to give

1

- _ (3.26)
T T 0+ KV + VA

he exception that the pol-

Note that Egs. 3.24 and 326 are similar in form with t
n addition to the outflow.

lutant residence time is affected by reactions and scutling i

EXAMPLE 3.2. TRANSFER FUNCTION AND RESIDENCE TIMES. For the
lake in Example 3.1, determine the {a) inflow concentration, (b) transfer function, (¢)
water residence time, and (d) potiutant residence time.

(@) The inflow concentration is computed as

Wo_ 140000 g7 mg L

= ——

o =g T 77500

Solution:

(b) The wransfer coefficient can now be determined as

3 Q
= - 2 =032
k e QO kV

Thus the removal processes act to create a lake cancentration that is 32% of the inflow

concentration.

(c) The residence lime can be calculated as
000
vo_ SO0 6674

™= T 7500

() The lelu:a.nl residence time is
B 1% _ 50,000
T = gy kv 7500+ 0.319(50.000)

rm, the residence time of a pollutant is about

= 2134

Because of the addition of the decay te
one-third the watet residence time.
[

—

[
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BOX 3.3. Eslimating Reaction Kinetics with a Steady-State CSTR
Grady g 3 ) desern
Srady and Lum ¢1980) deseribe a method for evaluating reaction kinetics usi
using experi-

ments conducted w "STRs i
prents conductad ith CSTRs. In this approach. which they call the algebraic method
» . ) N ) - ) cme
n o a steady-state. At this point the mass balance can be wrin "
written as

Qu - Qe -1V =
e , 0 {3.27)

where r = rate of ¢ . A
o dle} of consumption of the reactant (M L.73 ™) 1falt ol h .
asured the balance can be solved for the consump(ionv rat e oiher quanties
ale

ro= M ]
v = w0 (3.28)

"

If we assume that Eq. 2.7 holds
R
The parameters & - o
parameters & and n can be determined by taking the natural logarith
sarithm,
Inr = Ink +nlne (3.30y

Thus if a plot of Inr ver i

‘ sus in ¢ yields a straight B

Thee P : a straight line, Eq. 2.7 holds, and th

; gcepl L'an be used to calculate k and n. An exercise on the a ;i i e m?d
rob. 3.5 at the end of this lecture. pproach isprescnied in

3.3 TEMPORAL ASPECTS OF POLLUTANT REDUCTION

a (hiS pOi[l[ el ady- P
h < S C i S l nate
W 1ave 10« l]SC(I on stea ly-state SOIU“OH i i
. o : Yy . S, ese rovide an est d
(\!' n (; aVOC dg? water gtlallt) (ha[ will result lf Ioﬂdingb are held constant for a Surﬁ‘
clent y 1 [/‘lg‘“l.“e pCllOd.‘In addl“on 1%} hldey-Stﬂ[C prediCliOnS V\"l{el*(]uﬁl.( man-
age]s are afso ln[erﬁs(ed in ”]C [el“p()“ll rLSp()nSL Of ﬂ’llula‘ \V'J‘E S | y
[)po‘ £ 1t a sy@(em iS at st - : :
‘ ) < y-g S . .
;\l S ” : Cﬂ'(! 'sl:!((:. At a ;P(,Clht time a waste remo al
p '} anlefnen[ed. AS deplcled mrig. A two inte elated q l S i ’
roiect IS F 3.4, 1w 1T e estio arise:

. . . ' . 14
: i:/ohw lon.g W\““H take for improved water quality to occur?
at will the “shape™ of the recovery look like? .

To deterimti
‘(\C l ~ - e PREPEEN - v
he correct trajectory, letUs start with the mass-balance model
: e

(Eq. 3.16)

de

Vi = W0 = Qo= kVe —vaye (3.31)

Befor /i ' at
e solving this equation, we can divide it by volume to yield

de w0 v
T v Ve ke — e (3.32)
Collecting terms gives
[:Ii + /\(~ = K“)
N v (3.33)
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m!_,__fg*___,__,_a______
L
4] {a)
¢ L—_‘——v
| : _::::::Z::::-::EE:___ FIGURE 34 ‘
o (a) A waste load reduction along
e ¢/ with (b) four possible recovery
’ (%) scenarios for congentration.
where
Q (3.34)
=X +k+ %
A v 7]

. which A is called an eigenvalue (that is, a characteristic va.luc;);wnhomogcnemls'
" £ 4l the patameters (@, V, &, v, f{} are constant. Eq. 333152 S
" ’ ordinary differential equation. Its solution ggnsSigts © parts,
L,

(3.35)

linear, first-orde
c=2CgtCp

w = = = icular solution
here ¢ gcncral solation for the case W(r) 0 and ¢, = part
&
BM l th - T i is ter-
specific forms of (e)r'a‘ <olution co esponds to the case where the loadm(;g )
it m’ ! ibed next it
minalzga?ts?s ideal for investigating a system's recovery time. AS descri

will also provide us with insight into the shape of the recovery.

3.3.1 Tha General Solution

att = 0, Eq.3.33 with W(1) = O can be solved by the separation of van-
€ = = 0, Eq. 3.
[afbles (rf—:-%all sotution of Eq. 2.10):

(3.36)
¢ =

Th i 'sc tion
at an equation that describes how the lake's concentra
we . N d ' : .
us have arrive _ i
changes 2~ 4 function of time following the termination of waste loading

Th i i di d by the expopential function o
€ behfwo; of Eq. 3}"36?6'?11%1%:?8%%%%}&6? thgﬁmcnon (that 1s, the "vaiue
in Fig. 3.5, for the case w

xponential function’s value is unity. Thereaﬁer“f
. . . e . .

which € is raised: x) jg ZE10, he EXPORE in an accelerated fashion; that o
e g s prsive, e fncto, et 15 CRENS) e

it doubles its value at set interv ) ; ing at the
negative, the function asymptotically decreases toward Zero by halving

set intervals.

)
Ird

S ity 1
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0.693 1.386 FIGURE 35
The exponential function
T
s Decreasing A
¢
/ T
FIGURE 3.6
0 f——\.x The temporal response of our well-mixed
i ! * lake moddl followingthe termination of all
4 loadingsat ¢ = 0.

Thus we can now inte

- rpret Eq. 3.36. As in Fig. 3.6 the negative value of tt
B el peans

~at the concentration decreases a
1. her the rate of decrease is dictated b
lai e, the lake’s concentration will decre.
will be slow.

he
nd asymptotically approaches zero.
¥ the magnitude of the eigenvalue A. If A is

ase rapidly. If A is small, the lake's Fesponse

EXAMPLE 3.3. GENERAL SOLUTION.
concentration for a lake having the follo

Volume = 50,000 m’
Mean depth = 2 m
Inflow = outflow = 7500 m? ¢!

InExample 3.1 we determined the steady-
wing characteristics:

/ Temperature = 25°C
Was ing = 1400y Y
D& 49 140,000 2

If the initial concentration is equal to the ste

_ ady-staie level (597 mg L"), determine the
genceral solution.

Solution: The eigenvalue can be computed
Q 7500)

A=tk = 561000+ 0.319 = ga694

Thus the general solution is

59
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c = 5.97970 4691

which can be displayed graphicaly as

¢ (mg L)

t(d} FIGURE E3.3

Note that by 7 = 5 d the concentration is reduced to less than 10% of itseriginal value.
By ¢+ = 10d. for all intents and purposes, it has reached zero,

An interesting property of the general solution is that even though the loading
is reduced to zero, the concentration will never reach zero. This introduces an ele-
ment of ambiguity into the analysis. We now attempt to resolve this ambiguity by
introducing the concept of response time.

3.3.2 Response Time

Although the parameter group A clearly dictates the lake’s temporal response char-
acteristics, it has shortcomings for communicating with decision makers. First, it
has the counterintuitive property that as it gets large the time for the lake lo respond
getssmall. Second, as mentioned in the previous section, itsinterpretation isclouded
by the fact that. from a strictly mathematical perspective, the underlying cleansing
process never reaches completion. Try telling a politician that a cleanup would the-
oretically 1ake furever! They tend to react very unfavorably to asymptetic solutions
that extend beyond the next election.

Both these shortcomings can be rectified by using the general solution to derive
a new parameter group. Called the response time, this parameter group represents
the time it takes for the lake to complete a fixed percentage of itsrecovery. Thus the
problem of ambiguity is remedied by deciding “how much™ of the recovery isjudged
as being “enough.” For example we might assume that if the lake has experienced
95% of its recovery we would be satisfied that, for all practical purposes, the reme-
dial measure is successful.

In terms of Eq. 3.36 a50% response time means that the concentration islowered
to 50% of its initial value, or

0.50cy = coe M (33N

where 55 = 50% response time (T). Dividing by the exponential and 0.50¢¢ yields
oMo = 2 (3.38)
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TABLE 3.1

Response times

Response time fsa 632 frs Iso fs5 fss
Formula 0.6937A 174 139/ 23/ 3/A 4 6/A

Taking the natural logarithm and solving for s, gives

0.693

Isg = T (3_39)

Thus wecan see that the0.693 we observed previously (recall discussion of Fig. 3.5)
is actually the natural logarithm of 2. Note that the quantity rs, is also commonly
referred to as a half-life (recall Sec. 2.2.4).

The above derivation can be generalized to compute an arbitrary response time
by the formula
o = b 100
¢ X" 00— (3.40)

where s, = $% response time. For example if we are interested in determining how
long it takes to reach 95% of its ultimate recovered level, we could compute

oo Ly 1003
5T XM I00-95 T ] G4

Table 3.1 and Fig. 3.7 show other response times. As would be expected, the
higher the percentage of recovery, the longer the response time.

FIGURE 3.7 _ _
A plot @ the general solution showing values
o! several response times

EXAMPLE 3.4. RESPONSE TIME. Determine the 75%. 90%, 5%, and 99% re-
sponse times for the lake in Example 3 3.
Solution: The 75% response time Can be computed as

39

I.

175

In asimilar fashion wWe can cOmpute roq = 39d, 195 = 64d,and 1y = 9 84d

N
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o
(2]

As in Example 3.4 there is a certain amount of subjectivity involved in deciding

“haw much’” of the recovery is judged as being “enough.” In general [ recommend using
either foo OF 195- They are neither too lenient nor 160 stringent and conform to what most

individuals would Jdeem an acceptable level of recovery.

R

BOX 3.4, The Rule of 72
f handheld calculators and computers, bankers and financiers needed
To do this they developed a heuristic that is
quired to double your money

Before the days o
a quick way to evaluate their investments.

called the rule of 72. According to the ntle, the time re

can be estimated as

72 '
Doubling time = ——————7~
& interest rate (%)
+

For exampic if you invested some money at an annual interest rate of 6%, it would

double in approximately {2 years. The same formula can also be employed to asscss
how the valuz of your money decreases due to inflation. For example if the infla-
tion rate is 3%, the money hidden in your matiress would lose half its value in 24
years.

This formula is derived from th
representation, based on Eq. 3.41, mig

e concept of the half-life. In fact a more accurate
ht be called “the rule of 69.3,"

69.3

Doubling time = ——>——" ="
& interest rate (%)

The reason that a numerator of 72 was chosen is that it is more easily divided by
whole number interest rates. For example

72/ = T2 y¢ 72/5 = l4yr 7249 = 8yr
7212 72/6 = 1297 72010 = Tyt
723 = 24 yr¢ 727 = 10 yr
7274 = 18 yr 7218 = 9yr

[

It
e}
o

~
=

red to double or halve your money.

Thus you can guickly figure the time requt
our investments,

Aside from providing you with a handy means for evaluating y

\ we have included this discussion to illustrate how first-order processes and compound

interest are based on similar mathematics.

PROBLEMS

3.1. A pond with a single inflow stream has the following characteristics:

Mean depth = 3 m

Surface area = 2 X 10° m?

Residence time = 2 weeks

Inflow BOD concentration = 4 mg L
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A soluble pesticide is inpul to the lake at a rate of 10 X 105 mg yr™'. The in-lake

concentration is 0.8 pg L7'.

(@) Determine the inflow concentration (assume inflow = outflow).

(b) Determine the transfer function.

(c) If the only removal mechanism (other than flushing) is volatilization, compute the
flux of the pesticide out the lake's surface and to the atmosphere.

(d) Express the result of part (¢) as a volatilization velocity.

; 3.5. A rate experiment is perforined for a I-L. CSTR. The inflowing concentration is held
a0 steady at a level of 100 mg L', The flow is varied and the resulting outflow concen-
' trations are measured:

Obr) | 0l 02 04 08 16
c{mgL™") T 4] 52 64

Use the algebraic method to determine the rate and order of the reaction.

3.6. Denive Eq. 3.40.

3.7. A pond with a single inflow stream has the following characteristics:

Mean depth = 3 m
Surface area = 2 X 10° m?
Residence time = 2 wk

A subdivision will discharge raw sewage into this system. If BOD decays at a rate of
0.1 d7! and settles at a rate of 0.1 m d~', calculate the 75%, 90%. and 95% response
times for the pond.

3.8. Determine a half-life for a batch reactor with a second-order decay reaction.

3.9. Compute the first-order reaction rates for the following substances:
(a) cestum-137 (haif-life = 30 yr)
(b) iodine-131 (half-life = 8 d)
(c) tritium (half-life = [2.26 yr)

3.10. A lake (volume = 10 x 105 m?, water residence time = 2 months) is located adjacent
to a railway line that carries considerable traffic of chemicals. You are hired as a con-
suftant to provide insight into potential spills into the lake. If the lake is assumed to be
completely mixed, a spill would be distributed instantaneously throughout the volume.
Therefore the resulting concentration would be ¢g = m/V, where m is the mass of pol-
lutant that is spilled. Thereafter the lake's response would follow the general solution.
(a) Develop a plot of 135, 195, and re9 versus pollutant half life. Use logarithmic scales

where you believe they would be helpful.
(b) Include a short “user’s manual” for the plot to provide managers with guidance for
its use and interpretation.






