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A B S T R A C T

Surface soil moisture is an important factor in controlling the water and energy budget, as well as 
other hydrological and land surface processes. However, the coarse resolution of satellite data 
monitoring soil moisture presents a problem that can be addressed by downscaling. This study 
presents a novel approach for downscaling the coarse-resolution Soil Moisture Active Passive 
(SMAP) soil moisture product using a random forest model with data from Landsat, MODIS, 
Sentinel-1, and Sentinel-2 satellites. Key variables include vegetation indices, land surface tem
perature (LST), low-resolution microwave data, and elevation. Leveraging Google Earth Engine 
(GEE), individual models are developed for each SMAP image, using the closest finer satellite data 
to account for temporal variations and enhance prediction accuracy. The downscaled product was 
evaluated across various spatiotemporal scales and land cover types, showing strong correlations 
with precipitation and irrigation events, high efficacy in water body detection, and differentiation 
between crop types and moisture conditions. Comparisons with soil moisture time series from 
Spain’s REMEDHUS network indicate good agreement, with an R-value of 0.697 and an RMSE of 
0.098 m3/m3, very close to its much coarser resolution counterpart SMAP/Sentinel-1 1 km 
product with RMSE 0.07 m3/m3, highlighting the downscaled product’s robustness and accuracy. 
Developing the model for each target soil moisture product, as opposed to a single model for all 
images, reduces the time and volume of the training phase while maintaining prediction accu
racy. This study’s findings suggest that downscaling soil moisture data to 100 m resolution 
significantly enhances the ability to monitor and manage soil moisture at a finer scale. This 
improvement has broad implications for precision agriculture, hydrological modeling, and 
environmental monitoring, potentially leading to better resource management, improved crop 
yields, and more accurate hydrological predictions.

1. Introduction

Surface Soil Moisture (SSM) is a key variable in controlling the water and energy budget of the land ecosystem (Brocca et al., 2010; 
Petropoulos et al., 2015). It is crucial in driving hydrological and land surface processes (Ochsner et al., 2013). Accordingly, SSM 
estimation and the knowledge of its dynamic is valuable in many applications such as drought(Martínez-Fernández et al., 2016; 
Sánchez et al., 2018) and flood monitoring (Abushandi, 2016; Kim et al., 2018),evapotranspiration estimations (Martens et al., 2016; 
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Purdy et al., 2018) and water resources management (Kerr et al., 2010; Koster et al., 2018). In addition, recent advancements in 
high-resolution soil moisture observation enable new applications such as routine slope condition updates for landslide prediction and 
improved flash flood forecasting, both of which demand spatially dense and temporally relevant data (Brocca et al., 2023).

Remote sensing methods can provide a practical means for estimating soil moisture at regional and global scales when no prior data 
is available (Brocca et al., 2012). Microwave (MW) remote sensing can detect surface SM content directly by utilizing the dielectric 
difference between dry soil and liquid water. Because passive microwaves are less affected by vegetation, soil surface roughness, 
topography, and water content, they can provide more accurate surface SM estimates (Entekhabi et al., 2010; Piles et al., 2014). 
Among all MW frequencies, L-band (1–2 GHz) can penetrate through the atmosphere and moderate vegetation and is optimal for soil 
moisture measurements (Kerr et al., 2010).

Soil Moisture Active Passive (SMAP) (Entekhabi et al., 2010) and Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2010) are 
two L-band passive MW missions providing SM globally every 1–3 days (Ma et al., 2019), However, coarse-resolution passive mi
crowave SM data (>10 km) cannot provide detailed surface SM distributions needed for many hydrological and agricultural appli
cations. Therefore, fine-resolution auxiliary data from other satellite or in-situ measurements have been used to downscale the 
coarse-resolution data based on surface SM distributions. These approaches leverage the higher temporal granularity of passive 
MW measurements from SMAP and SMOS and combine them with higher resolution but less frequent thermal and optical imagery 
through downscaling approaches to create a soil moisture product with higher spatial and temporal resolution.

For a thorough examination of the current SM downscaling algorithms and the ancillary inputs they necessitate, refer to (Peng 
et al., 2017). Additionally, for a review of various techniques along with the advantages and disadvantages of different downscaling 
approaches, see (Sabaghy et al., 2018). The ML-based techniques seem better options for downscaling due to 1. not requiring con
current overpasses by other satellites and 2. data is not required in a continuous manner which enables us to use satellite data in a 
larger period. Many researchers have tried to reduce the resolution of remotely sensed data using different machine learning methods, 
in one of the first studies in this scope (Chai et al., 2011) an artificial neural network (ANN) model based on Moderate Resolution 
Imaging Spectroradiometer (MODIS) data used for downscaling Polarimetric L-band Multibeam Radiometer (PLMR) L-band data from 
20 Km resolution to 1 Km which reached the accuracy of RMSE = 0.018–0.035 m3 m− 3, this result demonstrates a highly promising 
level of accuracy for this class of downscaling methods.

Several studies compare the performance of random forest models using different auxiliary data, one of this research (Bai et al., 
2019), trained five random forest (RF) models under different auxiliary data driven by MODIS and Sentinel-1 (LST, leaf area index 
(LAI), and normalized difference vegetation index (NDVI) from MODIS, VV polarization from Sentinel-1 and digital elevation model 
(DEM)) and compared the performance between them. Also another study (Zhao et al., 2018) used four data combinations of MODIS 
(AM + Terra, PM + Terra, AM + Aqua, PM + Aqua) to train different RF models for downscaling SMAP and SMOS, results indicated 
similar good performance for all combinations, with an unbiased root-mean-square difference of 0.022 m3/m3. Several other re
searchers (Jin et al., 2021) integrate two or more machine learning models for downscaling coarse-resolution data.

The above studies and more investigations (Chen et al., 2020; Sishah et al., 2023) nominate random forest models are better for 
downscaling soil moisture data using high-resolution remote sensing data (Table 1 presents some selected studies), the reason is that 
the random forest model is more flexible with randomization that coincides with the nature of soil moisture. The model trains using 

Table 1 
Review of selected random forest studies for downscaling SMAP soil moisture data.

study Spatial 
resolution

Model training Auxiliary data Final 
resolution

validation

Gao et al. 
(2024)

9 KM data collected from May to 
September 2021, which is the 
non-freezing period of the soil

the normalized difference soil index 
(NDSI) and bare soil index (BSI), LST, 
NDVI, elevation, Albedo

1 KM 19 % Enhanced the model 
accuracy by using the Soil indexes 
(NDSI and BSI) as auxiliary data at 
the Weigan river basin

Sishah et al. 
(2023)

36 KM An RF model trained with one 
year of data

Vegetation Indexes and LST from 
MODIS, Soil grids (texture, density, 
and organic carbon), CHIRPS, 
modified SAR data

1 KM 20 soil samples in the wet and dry 
seasons (Awash River basin), with 
0.53 correlation value

(Nadeem 
et al., 
2023)

9&36 KM An RF and ANN model trained 
over the 2018 year

MODIS VI’s indexes and rainfall data 1 KM Stations over the ShanDian river 
basin with ubRMSE 0.034 m3/m3

(Wakigari and 
Leconte, 
2022)

9&36 KM RF model with summer season’s 
data from 2017 to 2020

NDVI, Albedo and LST from MODIS, 
Sentinel-1 (VV and VH), DEM (slop 
and aspect)

1 KM SCAN and USCRN network with 
R-value of 0.86 for 36 km and 0.91 
for 9 km

(Sun et al., 
2020)

36 KM DSCALE_mod16(a mathematical 
model)

MODIS ET’s data, gridded 
meteorological data

500 m At three different sites with 
ubRMSEs from 0.026 to 0.055 m3/ 
m3

Chen et al. 
(2020)

36 KM Trained an RF model over the 
2019 year

VI’s and LST from MODIS, DEM (slop 
and aspects), LST

1 KM Compared with 6 km CDAS 
(RMSE = 0.03 m3/m3) and 25 km 
GLDAS (RMSE = 0.08 m3/m3)

(Bai et al., 
2019, p. 
2)

9 KM Five RF models over one year 
(August 2017 to 2018) with 
different combinations of 
auxiliary data

VI’s and LST from MODIS, VV of 
Sentinel-1, DEM (slop and aspect)

3&1 KM At four stations during this year 
with ubRMSE from 0.033 to 
0.023 cm3/cm3
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vegetation indexes (NDVI, Soil Adjusted Vegetation Index (SAVI), enhanced vegetation index (EVI), and …) as well as other surface 
characteristics. The input variables were Synthetic Aperture Radar (SAR) data, optical data, and topography data, and the final output 
variable was SSM. As shown in Table 1, previous studies have utilized datasets spanning one year or more to train a single random 
forest model for the downscaling of various SMAP products.

Today, cloud computing platforms equipped with supercomputers provide the opportunity to develop models more rapidly without 
the necessity of downloading large volumes of data(Chi et al., 2016). Google Earth Engine enables the creation of distinct models for 
each target product. Specifically, we utilize different datasets to train a unique model using the nearest auxiliary data corresponding to 
each SMAP image. This approach offers three primary advantages compared to previous studies. First, the model is developed with a 
smaller volume of auxiliary data, which significantly reduces training costs. Second, the selection of data can be tailored to the 
conditions of the target image. For instance, we can choose the time span of the training data based on the soil moisture memory 
relevant to our study area. Third, we circumvent issues related to model transferability, allowing this approach to be implemented in 
any study area seamlessly.

Two separate models were developed for each image; Initially, based on MODIS indexes (NDVI, EVI, LAI, LST, normalized dif
ference water index (NDWI), Land Cover), topography data, and SAR data to downscale 10 km SM product to one KM data. Subse
quently, using NDVI, NDWI, EVI, and Normalized Difference Moisture Index (NDMI) indexes from Sentinel-2, SAVI, and EVI from 
Landsat8 with topography data, and SAR data to downscale 1 km product to 100 m products. Output results are evaluated and 
validated with two criteria, 1) precipitation time series in Iran and 2) REMEDHUS stations in Spain.

The paper is organized as follows: In the next section, case studies, as well as datasets and satellite data that are used for modeling 
and validation, are represented, then in section three, an overview of the downscaling technique is presented, likewise a representation 
of the soil moisture results is provided in section four, and in the two final sections, we evaluate the results for validation and discussion 
about outputs.

2. Data and study area

In the following section, we describe the datasets used in this study, i.e. in-situ data of ISMN network, precipitation data, Sentinel-1 
backscatter, Landsat-8 (L8), Sentinel-2 optical data, and MODIS data. Our analysis focuses on the year 2020 and Google Earth Engine 

Fig. 1. Simineh-Zarineh river basin location in Iran, elevation map, and Landsat visualization.
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(GEE) made available all data except ISMN and precipitation data. The training set included nearly 2000 samples.

2.1. Study areas

Two study areas were investigated in this research.

2.1.1. Simineh-Zarineh river basin
Simineh-Zarineh river basin is located in the south and southwest of Urmia Lake in Iran. From the view of extent, it is the first sub- 

basin of the Urmia Lake Basin. Its coordinates in the east-west direction are from 45◦27′38.2″ to 47◦21′56.3″ and in the south-north 
direction are from 35◦40‘8.3″ to 37◦44′13.1’’. The elevation range in this area from 1260 m to 3380 m is variable. The average 
annual temperature in this region is 11.2 ◦C and the average annual precipitation and evaporation are 341 and 1200 mm/year, 
respectively(Djamali et al., 2008).

2.1.2. Duero river basin (REMEDHUS network)
A basin in the center of Spain is an area also chosen for downscaling in the present study. The majority of the land in this region is 

croplands and shrublands, and it is located about 650 m above sea level. There is a semiarid Mediterranean climate in the region, which 
is characterized by hot, dry summers and cold, mild winters (Ceballos et al., 2005). Fig. 2 shows the REMEDHUS soil moisture 
observation network in the center of the study area. The network is located in a flat area of about 1225 square km (41.1–41.5◦ N, 
5.1–5.7◦ W), with elevations between 700 m a.s.l. and 900 m a.s.l. Precipitation and temperature average 385 mm and 12 ◦C, in order. 
The land use of the network Is divided into rainfed cereals (78 %), forest and pasture (13 %), irrigated crops (5 %), and vineyards (3 %) 
(Sánchez et al., 2012). At the soil moisture stations, capacitance probes are used to measure soil moisture at hourly intervals in the top 
layer (5 cm).

2.2. Data

2.2.1. Ground-based data
The ISMN was established as a global in-situ soil moisture database, its website accessed on February 28, 2020 (https://ismn.geo. 

tuwien.ac.at), through which data from hundreds of worldwide stations are available. We used the REMEDHUS network in Spain 
which is provided by Universidad de Salamanca with 19 active stations. Daily records of precipitation were taken from six synoptic 
stations of the Iran Meteorological Organization (IMO) from the year 2020 for time series validation of soil moisture (Fig. 1). These 

Fig. 2. Location of REMEDHUS network stations on the elevation map of 2.2.2. SMAP Soil Moisture.
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stations are located inside Simineh-Zarineh river basin in Iran.
The SMAP satellite was launched on January 31, 2015 with L-band missions aimed at generating soil moisture products over the 

globe. The SMAP orbit is a near-pole with overpass ascend and descend times at 6:00 p.m. and 6:00 a.m. local time. The satellite 
mission was to produce a soil moisture map with three resolutions: 36 km passive (O’Neill, Peggy E. et al., 2018, p. 3), 9 km active- 
passive (Entekhabi et al., 2010), and 3 km active radar. However, a failure occurred in the radar on July 7, 2015 that caused limitations 
in active and active-passive product generation. Nevertheless, SMAP passive soil moisture products have an important role in 
recording and monitoring soil moisture with an accuracy that meets all mission requirements (Chen et al., 2018). In this study, 
NASA-USDA Enhanced SMAP Global Soil Moisture Data was used. This product is a 3-day composite product generated by NASA GSFC, 
containing global estimates of SSM including ascending and descending half-orbit estimates. It is available from April 1, 2015 until 
August 2, 2022 (https://gimms.gsfc.nasa.gov/SMOS/SMAP/) for the whole world. We downscaled SSM data from the year 2020.

2.2.2. MODIS products
SSM and the other surface variables must be related in any downscaling scheme. As demonstrated by previous downscaling studies, 

LST, NDVI, EVI, surface albedo, LAI, and NDWI are extremely useful in expressing the relationship between them and SSM (Chauhan 
et al., 2003; Peng et al., 2015; Sánchez-Ruiz et al., 2014; Zhao and Li, 2013). As a result, each of these variables was obtained from the 
corresponding MODIS products, including Terra Vegetation Indices (NDVI and EVI) 16-Day Global 250m (MOD13Q1), Terra Leaf Area 
Index/FPAR 8-Day Global 500m (MOD15A2H), Terra Land Surface Temperature and Emissivity Daily Global 1 km (MOD11A1.061) 
and MODIS Terra Daily NDWI (available from 2020). For the LST product, the sensitivity analysis conducted in a previous study (Peng 
et al., 2015) emphasized the importance of daytime LST as an expression of SSM. Additionally, another study (Pablos et al., 2016) 
found that downscaling results using MODIS daytime LST performed better than those using MODIS nighttime LST.

2.2.3. Landsat8 products
Landsat 8 is a satellite governed by the USGS, providing Earth imagery with a spatial resolution from 30m to 100m every 16 days. 

Two instruments acquire data from this Satellite, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). Data in 
the GEE data collection USGS L8 Surface Reflectance Tier 1, which consists of atmospherically corrected surface reflectance for red 
visible and near-infrared (NIR) bands, have been regarded as features for surface vegetation indicators (Chander et al., 2009). Landsat 
SAVI and LAI were extracted from these satellite images.

2.2.4. Sentinel-1 and Sentinel-2
Sentinel-1 is a C-Band SAR labored inside the Copernicus program, a joint invention of the European Fee (EC) and the European 

Space Agency (ESA). The usual acquisition mode is the Interferometric Wide Swath Mode (IW), with acquisitions at a 250 km huge 
swath and a spatial resolution of five in 20m. S1 rotates in a near-polar, solar-synchronous orbit with a 12-day repeat cycle. The two 
satellites A and B percentage the same orbit plane with a 180◦ orbital phasing distinction, which leads to a 6-day repeat cycle for the S1 
constellation. The information available on GEE provides dual-polarization (VV + VH) ground range Detected (GRD) product (Fletcher 
& European Space Agency, 2012) which we used VV polarization due to more sensitivity on soil moisture than VH (El Hajj et al., 2017).

ESA expanded the Sentinel-2 mission as part of the EU Copernicus program, with two satellites orbiting together (Sentinel-2A and 
Sentinel-2B) in 2017. Both incorporate an optical sensor (Multi-Spectral Instrument) the same as those in the Landsat satellites, though 
they have higher spatial, temporal, and spectral resolutions. MSI covers the globe at 10 or 20m, depending on the spectral band, with a 
revisit time of 10 days (since June 2015, when Sentinel-2 A was launched) and 5 days (since March 2017, when Sentinel-2B was 
launched). As a result of the overlap between adjacent orbits, 2–3 days of revisit time can be obtained in mid-latitudes by combining 
both satellites (Gascon et al., 2017). we used Sentinel-2 MSI Multispectral Instrument Level-2A (L2A) to extract NDVI, NDWI, EVI and 
NDMI.

2.2.5. Elevation
The NASA Shuttle Radar Topography Mission (SRTM) DEM, version 2.1, obtained from the land processes distributed archive 

center (https://lpdaac.usgs.gov/), supplied the topographic factors (elevation and slope) for the downscaling study in addition to the 
above satellite data.

3. Methodology

Machine learning techniques such as random forest (Breiman, 2001) are widely used for classifying, regression, and prediction. To 
reduce over-fitting, RF uses multiple weak classifiers (decision trees) in an ensemble learning model, in other words, after generating a 
large number of trees, they pick up the most popular class. We call these procedures random forests. Accordingly, the RF model outputs 
are the mean predicted values of all independent decision trees in a regression model. RF is suitable for complex and highly nonlinear 
relationship models due to its adaptive, randomized, and decorrelated features. In comparison to other models, RF is simple, flexible, 
and less affected by hyperparameters (hyperparameters are the tuning controls that adjust how a machine learning model learns from 
data) compared to others. It has also been shown in previous studies that the RF model is effective in complex nonlinear fitting and that 
it can be used to downscale SM models (Im et al., 2016; Zhao et al., 2018). The 9 km SMAP enhanced (Chen et al., 2018), and the 1 km 
SMAP/Sentinel-1 soil moisture data (Das et al., 2019) products have been shown to contain significantly more detail compared to the 
original 36 km SMAP product (Lawston et al., 2017; Zhang et al., 2019; Jalilvand et al., 2021). However, many complex factors still 
affect soil moisture distribution at finer scales, including topography, vegetation, surface temperature, and soil hydraulic properties, 
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which cannot be fully captured at coarser resolutions (Peng et al., 2017). Meanwhile, RF is known for its low out-of-bag error (good 
generalization capability) and robustness against overfitting (Breiman, 2001; Belgiu and Drăguţ, 2016; Breiman, 2001)To downscale 
SMAP SM products, fine-resolution auxiliary data are utilized to obtain detailed information. The general process of downscaling 
SMAP SM (in two separate stages) is shown in Fig. 3. Surface soil moisture data from SMAP at 10 Km resolution is the target variable 
also auxiliary data is represented in Fig. 3 also mentioned in Table 2.

There are some considerations for the auxiliary data described in Table 2. First, C-band radar penetrates the soil surface to measure 
soil moisture directly. VV (Vertical Transmit-Vertical Receive) polarization is more related to soil moisture changing and less influ
enced by vegetation and soil surface roughness in comparison with VH (Vertical Transmit-Horizontal Receive) polarization (El Hajj 

Fig. 3. Downscaling flowchart.
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et al., 2017). Furthermore, the share to and debilitation of vegetation on the total backscattering coefficients from Sentinel-1 SAR data 
can be described with vegetative indexes from optical data (El Hajj et al., 2017). Also, for reducing the surface roughness error we 
involve LST. Second, selecting the feature space of vegetation indexes (like NDVI, EVI, NDWI, and LAI) and LST is an axial physical 
foundation for downscaling SM (Choi and Hur, 2012). Third, considering the influence of topographical changes on the earth’s surface 
on the surface energy and surface backscatter, the slope and elevation parameters were selected as input variables as criteria to express 
this effect (Han et al., 2018). Fourth, according to soil moisture memory that depends on soil properties and other meteorological and 
biophysical variables of soil, we employed only S1 data recorded a maximum of three days (Lower or greater depending on specific 
information about the case study area) apart from the moisture date due to the geographical characteristics of the studied area 
(Martínez-Fernández et al., 2021).

Nevertheless, it is also important to outline the weaknesses of the RF models in this study. First, microwave penetration in soil 
depends on SM content, soil texture, and microwave frequency (Owe and Van de Griend, 1998). SMAP works in the L-band (pene
tration about 5 cm in soil) and Sentinel-1 works in the C-band (penetration about 2 cm in soil) so the depths of penetration are 
different. However, using Sentinel-1 SAR data to downscale coarse-resolution SMAP SM may be beneficial (He et al., 2018; Santi et al., 
2018). Second, a significant difference could exist between MODIS daily LST values and those values that exist during SMAP acqui
sition (Piles et al., 2011). Additionally, an SMAP L-band satellite can measure a depth of 5 cm over bare soils, whereas a MODIS sensor 
of thermal infrared can measure a depth of 1 mm and the two depths’ thermal regimes may be quite different (Entekhabi et al., 2010; 
Piles et al., 2011). Nonetheless, using LST data to downscale coarse-resolution SMAP SM may be beneficial (Amazirh et al., 2019; El 
Hajj et al., 2017; Im et al., 2016; Piles et al., 2011).

Therefore, two RF models are established for two stages of downscaling (equations(1) and (2) show the RF models formula.) 

SM1 =RF
[
NDVI. EVI. LAI. LST. NDWI. Elevation. Slop. Land cover. σ0

vv(if exist)
]

(1) 

and 

SM2 =RF
[
NDVI. NDWI. EVI. NDMI. SAVI.LAI. Slop.Elevation. σ0

vv(if exist)
]

(2) 

The process of downscaling involves the following steps. 

1. Select an SMAP global soil moisture product on a specific date.
2. Select the nearest available auxiliary products by date. (at max 8 days difference, due to the 16 days-once product like NDVI, EVI, 

and …)
3. If there is S1 data three days (the duration should vary based on the soil moisture memory in the case study) apart from the target 

date use that, or else, don’t use S1 data as an input for the model.
4. Take a 100-point sample of each auxiliary product for training the RF model with a stratified random sampling method (Cochran, 

1946) (which is suitable for populations that can be partitioned into sub-populations).
5. Train the RF model with sample data relative to soil moisture target value.
6. Apply the trained RF model over the coarse-resolution SMAP products to extract fine-resolution downscaled data.

4. Results

4.1. Parameter importance

Based on the range and distribution of 10 Km samples, the importance of the different variables was analyzed using the Mean 
Decrease in Accuracy (MDA) method, as implemented in the Google Decision Forests framework. This method estimates how much the 
model’s predictive performance decreases when the values of a given variable are randomly permuted, thereby indicating the relative 

Table 2 
Input data (features) used for downscaling SMAP products.

Product Satellite Spatial and temporal resolution Source

NDVI MODIS 250 m–16 days MOD13Q1.061 Terra Normalized Difference Vegetation Index
NDVI Sentinel-2 10 m–10–12 days Harmonized Sentinel-2 MSI: Multispectral Instrument, Level-2A
EVI MODIS 250 m–16 days MOD13Q1.061 Terra Enhanced Vegetation Index
EVI Sentinel-2 10 m–10–12 days Harmonized Sentinel-2 MSI: Multispectral Instrument, Level-2A
LAI MODIS 500 m–8 days MOD15A2H.061: Terra Leaf Area Index
LAI Landsat8 30 m – 8days USGS Landsat 8 Level 2, Collection 2, Tier 1
LST MODIS 1 Km – daily MOD11A1.061 Terra Land Surface Temperature and Emissivity
NDWI MODIS 500 m–16 days Terra Daily Normalized Difference Water Index
NDWI Sentinel-2 10 m–10–12 days Harmonized Sentinel-2 MSI: Multispectral Instrument, Level-2A
VV product Sentinel-1 10 m–12 days Sentinel-1 SAR GRD VV polarization
NDMI Sentinel-2 10 m–10–12 days Harmonized Sentinel-2 MSI: Multispectral Instrument, Level-2A
SAVI Landsat8 30 m – 8days USGS Landsat 8 Level 2, Collection 2, Tier 1
DEM/Slope GTOPO30 1 Km – Yearly GTOPO30: Global 30 Arc-Second Elevation
DEM/Slope SRTM 30 m - Yearly NASA SRTM Digital Elevation
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contribution of each variable to the model’s accuracy (Fig. 4). As we can see, the most important variable in both stages is elevation 
extracted from DEM, stage one of downscaling LST and NDVI have the most impact on model output, also in stage two LAI and SAVI are 
the important ones. As the literature discussed (Peng et al., 2017) the importance of topographical features is more than other pa
rameters when the downscaling scale gets finer, also the finer the resolution, the more important the topographical feature become (in 
Fig. 4 the importance of DEM increased compared to other variables at step two of downscaling from 34.8 % to 40.5 %). Further, land 
cover patterns should have the least importance in downscaling finer products (it is satisfied in stage one so we do not conduct this type 
of data for the next stage). Moreover, Fig. 4 reveals that the importance variables hover around 10 % across both stages of downscaling. 
This consistency suggests that all variables exert a significant influence on the output, thereby validating the decision to incorporate a 
comprehensive set of variables in our model development process. In essence, the inclusion of additional data contributes positively to 
the creation of robust downscaling models. This assertion aligns with the inherent mechanism of random forest models, which leverage 
input variables to identify the most influential predictors. By enriching the dataset with more relevant variables, we inherently 
enhance the model’s capacity to capture the nuances of the target variable, thereby improving its overall performance. Furthermore, in 
our methodology, we omitted the utilization of Sentinel-1 images for downscaling instances where the temporal gap between SMAP 
and Sentinel-1 exceeded three days. Our analysis reveals that the importance attributed to these data stands at approximately 7 %. This 
finding suggests that our decision to exclude Sentinel-1 images in such scenarios does not significantly compromise the downscaling 
process.

4.2. Comparing downscaled 100m and the baseline 10 Km SMAP soil moisture data

In Fig. 1-A land cover map of the Simineh-Zarineh river basin was represented at 10-m resolution (produced by FAO). For a better 
display soil moisture map, an area of the basin (Fig. 1-C) is selected which contains all class types. The representation of the down
scaled product in comparison with an original map for three selected months (May, August and November) is shown in Fig. 5. The 
water area in the red rectangles is separated from the land features. Additionally, we have made the basin network in the middle and 
mountain areas on the right side of the map bold and well-defined in the downscaled version.

4.3. Validation against in-situ data

In this section, the validity of the downscaled product responds to the available in-situ and station data in different aspects such as 
temporal behavior and proximity to the ground data.

Fig. 6 shows the time series of SMAP surface soil moisture data, downscaled SMAP data, and daily precipitation of synoptic stations 
which are presented in Fig. 1. SMAP SSM data and downscaled SSM data showed good temporal consistency, despite their large-scale 
differences, it appears that the downscaled SSM preserves the feature of temporal changing of the SMAP SSM in a significant manner. 
Moreover, the downscaled product has stronger ups and downs in the rainy periods (specifically end of November and between March 
and May) related to better recognition of soil moisture responding to evaporation or infiltration. In addition, despite the coarse res
olution of SMAP products that have a constant trend in periods without precipitation, the downscaled time series show a fluctuation 
trend in periods without precipitation (Precipitation-free periods in July and September) which corresponds to human activities.

SM time series for the REMEDHUS network (Fig. 2) was calculated and compared pixel-to-point with in-situ data. REMEDHUS 

Fig. 4. (a) the variable’s importance in stage one of downscaling (b) the variable’s importance in stage two of downscaling.
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network record SSM every hour, we select data from the overpass time of SMAP and compare them with downscaled values. The time 
series of the downscaled product and in-situ data show a precise time concordance in the changes (Figs. 7–10- Left).

The normalized value of satellite SM concerning in-situ measurement is represented in Figs. 7–10. The average R2 score in all 
stations is 0.697 suggesting a strong positive relationship (this means that the model explains about 70 % of the variance in the 
observed data) with an RMSE value of 0.098 m3/m3. As discussed, the model tends to underpredict soil moisture values in the majority 
of cases.

5. Discussion

5.1. Model architecture and auxiliary data

In the development of the model, we exclusively utilized the temporally nearest auxiliary satellite data to construct a specialized 
model for each SMAP image. This approach enhanced our ability to control the downscaling process and eliminated irrelevant or 
erroneous data within the study area. For instance, as demonstrated by recent studies (Mao et al., 2022), accounting for soil moisture 
memory in the selection of auxiliary data is crucial for enhancing model accuracy. Previous studies have employed Sentinel-1 data to 
train models without considering the temporal interval with SMAP images, resulting in errors in the final output. This oversight can 
lead to inaccuracies, as surface soil moisture conditions can fluctuate significantly over short periods due to various factors such as 
heatwaves (McColl et al., 2019) or even influence of growing seasons (De Queiroz et al., 2020).

Typically, all random forest models for downscaling soil moisture products are trained with auxiliary data such as soil texture, 
topography, vegetation indices, or optical and thermal infrared observations (as detailed in the introduction and methodology sec
tions). However, previous studies have often used a limited variety of such data. For example, they might only use MODIS vegetation 
indices or a combination of vegetation and topographical indices due to the extensive training sets required when utilizing a year or 
more of data. The large volume of training data in these studies has restricted the variety of data they could employ. In contrast, by 
focusing on the quantity of data, our study enables the use of a wider variety of data, which provides a better approach for training a 
random forest model to downscale soil moisture products.

Since the model relies on the original 10 Km soil moisture data as a reference for prediction, the accuracy of this dataset inherently 
influences the precision of the 100m output. In instances such as the May output (Figs. 5 and 11), where all auxiliary data are available, 
the model effectively assigns higher soil moisture values to water bodies. However, a notable bias in the model constrains soil moisture 
values within the range of the original image. As a result, while the model may assign high soil moisture values to water bodies, it 
typically refrains from attributing maximum soil moisture values to such areas due to this inherent limitation.

To address this limitation, integrating in-situ soil moisture data into the model development process could be beneficial. By 
incorporating ground-truth measurements, the model gains access to more accurate and localized soil moisture information, improving 
its ability to differentiate between land and water surfaces. This approach could mitigate the bias stemming from the reliance on the 

Fig. 5. Three months (May, August, and November) downscaled and original SMAP products.
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original 10 km soil moisture data and enhance the model’s performance in accurately predicting soil moisture values, particularly in 
areas with distinct land-water boundaries (Fig. 11).

Additionally, because the model is trained separately for each image, it effectively maintains spatial continuity even when pixel 
values lack geographic consistency. This capability is evident in cases like the November output, where the model distinguishes terrain 
characteristics from the condensation process and assigns appropriate moisture values. For example, in this month, the original image 
failed to detect the elevated moisture levels associated with water body areas (August at Fig. 5). However, the downscaling process 
successfully identified the water body and correctly allocated high moisture values to that specific area. This highlights the strength of 
the downscaling technique in enhancing resolution and accuracy, particularly in detecting subtle moisture variations that might be 
overlooked in the original image.

5.2. Spatial and temporal accuracy assessment

5.2.1. Benefits of achieving 100 m resolution and its power to detect ground features
This higher level of soil moisture detail allows for optimizing resource use and ultimately improving crop yields. Such precision is 

not achievable with the coarser 1 Km downscaled data, which lacks the granularity needed to account for small-scale variations in soil 
moisture. Furthermore, the enhanced spatial resolution of 100 m data significantly benefits hydrological modeling. Accurate soil 
moisture inputs are crucial for predicting surface runoff, infiltration, and soil erosion. The finer spatial resolution of 100 m downscaled 
data improves the accuracy of these models, enabling better predictions and more effective management of water resources. In 
contrast, 1 Km downscaled data may overlook critical local variations, leading to less reliable hydrological assessments and 
predictions.

Moreover, the model’s final outputs have demonstrated high accuracy in detecting soil moisture in challenging areas. Due to the 
influence of water bodies such as lakes on the brightness temperature received by SMAP satellite sensors (Du et al., 2016) and the 
utilization of the water fraction coefficient to determine the final moisture content, the moisture levels recorded over water bodies are 
generally among the lowest in the dataset (Ye et al., 2015). Therefore, identifying soil moisture in regions near these water bodies and 
accurately delineating their boundaries are crucial and challenging tasks. As illustrated in Fig. 11, which corresponds to May, the 

Fig. 6. Time series of original SMAP products and downscaled SMAP in comparison with precipitation.
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downscaled images effectively detect the water body and the moisture in the surrounding lands. This precise allocation of water body 
values and adjacent soil moisture highlights the significant potential of these outputs for various applications requiring high-resolution 
soil moisture data. However, a notable limitation of our models is evident. As shown in Figs. 8 and 10, the availability of auxiliary data 
influences the model’s performance. While the model effectively detects water bodies and estimates land moisture when sufficient 
cloud-free MODIS, Sentinel-2, and Landsat-9 images are accessible, its accuracy is lower during periods of extensive cloud cover. 
Future studies could investigate the impact of employing different masking techniques or focusing on coastal regions with expanded 
training datasets. By incorporating more diverse and region-specific data, researchers can potentially enhance model performance and 
improve the accuracy of water body detection and land moisture estimation. Cloud cover remains a significant challenge for 
optical-based downscaling approaches; however, in this study, the integration of microwave data and DEMs allowed the model to be 
trained effectively even under cloudy conditions. Additionally, leveraging both Sentinel-2 and Landsat-8 imagery, which have 
different revisit times, helped increase the availability of cloud-free observations for training, further supporting model robustness.

However, the amount of predicted data is not the same as the station record due to two main reasons. First, one important limitation 
in the validation of satellite-derived soil moisture against in-situ measurements lies in the inherent spatial scale mismatch between the 
two datasets. Ground stations provide point-based observations, whereas satellite products—particularly those derived from passive 

Fig. 7. Comparison of in-situ soil moisture with downscaled SMAP estimates: (Left) Time series; (Right) for the REMEDHUS stations.
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microwave sensors—represent soil moisture averaged over larger spatial footprints, often ranging from hundreds of meters to tens of 
kilometers. This discrepancy introduces uncertainty, as localized soil moisture variability within a satellite pixel—driven by factors 
such as vegetation, soil type, land cover, and topography—cannot be captured by a single point measurement. In this context, the 
temporal dynamics of point data may offer more relevant insights than direct comparison of absolute values, especially when high- 
resolution ground observations across the full satellite pixel are not available. Although our study does not implement spatial 
downscaling or representativeness filtering, we acknowledge this limitation and suggest that future work may benefit from incor
porating such techniques (e.g., empirical, semi-empirical, or physically-based methods) to improve the robustness and accuracy of 
satellite validation efforts. Second, SMAP Enhanced product in GEE has a limitation of a maximum of 25 mm water in the top 5 cm of 
the soil layer which is fixed for agricultural use and it is not exactly what happens on bare soil and most common areas. For example, 
the SMAP time series at station 7 in Fig. 8 mimics the real-time series, but the moisture values are higher than half on most of the days, 
while our product does not increase as much as expected due to the limitation of the earth engine product. Furthermore, upon 
reviewing the soil composition at this station, it becomes evident that it primarily comprises clay soil (49 % clay and 51 % sand and 
silt), this type of soil exhibits a notable capacity for water retention, particularly in high-precipitation regions like there. At other 
stations, such as station 14 in Fig. 9, we observe significantly improved accuracy in terms of soil moisture values. Nonetheless, across 
all stations, the time series behavior is faithfully modeled, albeit with minor discrepancies in the absolute values. This consistency 

Fig. 8. Comparison of in-situ soil moisture with downscaled SMAP estimates: (Left) Time series; (Right) for the REMEDHUS stations (continued).
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suggests that while the model may vary slightly in its quantification of soil moisture levels at different locations, it effectively captures 
the temporal dynamics of soil moisture fluctuations across the study area. Additionally, the error values for each station are presented 
in Fig. 12.

5.2.2. Time-series changes and SMAP pass times
The SMAP soil moisture downscaled product demonstrates its ability to capture anthropogenic influences, such as irrigation. 

Beyond this, it effectively responds to extreme rainfall events, as shown in Fig. 6, positioning it as a valuable tool for flood-related 
studies. The downscaled product accurately captured the soil moisture increase associated with intense rainfall events at sta
tion#99332 on November and station#40728 at the end of November. This capability highlights its potential for improving hydro
logical modeling and flood forecasting. In contrast, the original SMAP product maintained a relatively constant soil moisture trend 
during the late November and December rainfall events at station#40728. However, the extreme rainfall event in station#99292 on 
November 29, 2020, was not captured by either the downscaled or original SMAP product, likely due to the satellite’s overpass time 
and soil moisture filtering processes. These findings underscore the importance of considering product limitations when analyzing 
extreme hydrological events.

Moreover, during the period from May to September, the coarse-resolution SMAP data remains relatively constant due to no 

Fig. 9. Comparison of in-situ soil moisture with downscaled SMAP estimates: (Left) Time series; (Right) for the REMEDHUS stations (continued).
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precipitation events. However, the downscaled soil moisture data exhibits noticeable fluctuations, which can be attributed to fine-scale 
processes such as irrigation and evaporation. the observed fluctuations in soil moisture (~5 mm in the top 50 cm layer) may seem 
relatively small compared to typical irrigation amounts. However, this can be attributed to the SMAP overpass time, which occurs 
around noon. By this time, a significant portion of the irrigation applied the previous day has either evaporated or infiltrated into 
deeper soil layers. As a result, the increase in soil moisture captured by SMAP appears moderate despite active irrigation.

It should mention that one important limitation in the validation of satellite-derived soil moisture against in-situ measurements lies 
in the inherent spatial scale mismatch between the two datasets. While ground stations provide point-based observations, satellite 
products—particularly those derived from passive microwave sensors—represent soil moisture averaged over large spatial footprints. 
This discrepancy introduces uncertainty, as localized soil moisture variability within a satellite pixel, influenced by heterogeneities in 
vegetation, soil type, land cover, and topography, is not captured by a single station. Consequently, direct one-to-one comparisons 
without addressing this mismatch may obscure meaningful interpretations. Although our study does not employ spatial downscaling 
methods, we acknowledge this limitation and emphasize that future work may benefit from incorporating downscaling techniques (e. 
g., empirical, semi-empirical, or physically-based methods) or applying spatial representativeness filters to improve the robustness of 
validation.

6. Conclusion

This study presents a novel approach to downscaling SMAP soil moisture using a random forest model tailored to each target SMAP 
image. By strategically selecting training data and applying a unique model for each image, we significantly reduced computational 
costs compared to previous studies while maintaining comparable accuracy.

Our results demonstrate the effectiveness of the proposed method in capturing spatial heterogeneity and temporal dynamics of soil 
moisture. The downscaled product exhibits strong correlations with precipitation and accurately represents various land cover fea
tures, including water bodies and different crop types. Successful applications in both arid/semi-arid and humid regions highlight the 
versatility of the model.

This research contributes to the field by introducing a new paradigm for downscaling soil moisture and showcasing the potential of 

Fig. 10. Comparison of in-situ soil moisture with downscaled SMAP estimates: (Left) Time series; (Right) for the REMEDHUS stations (continued).
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cloud computing to accelerate the modeling process. The generation of high-resolution soil moisture data (100 m) opens up new 
opportunities for precision agriculture and improved hydrological modeling.

While this study focuses on Random Forest due to its proven performance, computational efficiency, and native support in Google 
Earth Engine, we acknowledge the value of comparing multiple machine learning models. Future research could explore benchmark 
comparisons with other tree-based or ensemble methods (e.g., XGBoost) and deep learning approaches where feasible, especially in 
local or smaller-scale studies where platform constraints are less prohibitive. This would further refine the selection of optimal models 
for different environmental and computational contexts.

Fig. 11. Detailed soil moisture map for a selected area near the water body.

Fig. 12. Comparison of RMSE (blue bars) and R-value (red markers) for soil moisture estimation at REMEDHUS stations.
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